MEETING NOTICE MAIZE CITY COUNCIL REGULAR MEETING

TIME: 7:00 P.M. DATE: MONDAY, DECEMBER 19, 2016 PLACE: MAIZE CITY HALL 10100 W. GRADY AVENUE

AGENDA

MAYOR CLAIR DONNELLY PRESIDING

- 1) Call to Order
- 2) Roll Call
- 3) Pledge of Allegiance/Moment of Silence
- 4) Approval of Agenda
- 5) Public Comments
- 6) Consent Agenda
 - a. Approval of Minutes Regular Meeting of November 21, 2016 and Special Meeting of November 30, 2016.
 - b. Receive and File Park Board minutes of July 12, 2016.
 - c. Receive and file Planning Commission minutes of October 6, 2016.
 - d. Cash Disbursements from November 1, 2016 thru November 30, 2016 in the amount of \$385,413.18 (Check #63453 thru #63585)
 - e. Approval of Cereal Malt Beverage applications from January 1, 2017 through December 31, 2017 for Maize Pizza Hut North, Maize Pizza Hut Italian Bistro, Kwik Shop, and Kansas International Dragway
- 7) Old Business

A. None

- 8) New Business
 - A. Agri Environmental Services Agreement
 - B. Aero-Mod Inc Agreement

9) Reports

- Police
- Public Works
- City Engineer
- Planning & Zoning
- City Clerk
- Legal
- Operations
- Mayor's Report
- Council Member's Reports
- 10) Executive Session
- 11) CitAd Maizen Kansas

MINUTES-REGULAR MEETING MAIZE CITY COUNCIL Monday, November 21, 2016

The Maize City Council met in a regular meeting at 7:00 p.m., Monday, **September 19, 2016** in the Maize City Hall, 10100 Grady Avenue, with *Mayor Clair Donnelly* presiding. Council members present were *Karen Fitzmier, Pat Stivers, Donna Clasen, Alex McCreath* and *Kevin Reid*.

Also present were: *Richard LaMunyon*, City Administrator, *Rebecca Bouska*, Deputy City Administrator, *Jocelyn Reid*, City Clerk, *Matt Jensby*, Police Chief, *Ron Smothers*, Public Works Director, *Bill McKinley*, City Engineer, *Kim Edgington*, Planning Administrator, *Tom Powell*, City Attorney.

APPROVAL OF AGENDA:

The Agenda was submitted for approval with the addition of Item 6 (a) – LKM Service Awards.

MOTION: *Stivers* moved to approve the Agenda as amended. *Clasen* seconded. Motion declared carried.

PUBLIC COMMENTS:

Justin Swiler, tenant at 803 Surrey Lane and Tony Smith, property owner of 803 Surrey Lane addressed the Council regarding the July 3, 2016 sewer backup and the status of the City's claim against Utilities Plus.

CONSENT AGENDA:

The Consent Agenda was submitted for approval including:

- a) Approval of minutes Regular Council Meeting of October 17, 2016
- b) Cash Disbursements from October 1, 2016 through October 31, 2016 in the amount of \$458,882.42 (Check #63289 through #63452).
- c) Approval of Busby, Ford Reimer LLC engagement letter for auditing services for the year ending December 31, 2016 in the amount of \$15,500.
- **MOTION:** *Clasen* moved to approve the Consent Agenda as submitted. *Stivers* seconded. Motion declared carried.

PRESENTATION OF LEAGUE OF KANSAS MUNICIPALITIES SERVICE AWARDS:

Mayor Donnelly presented six employees with service awards from the League of Kansas Municipalities:

- Matt Jensby 20 years
- Richard LaMunyon 15 years
- Craig Brasser 10 years
- Sara Javier 10 years
- Jeff Piper 10 years
- Jocelyn Reid 10 years

PUBLIC HEARING FOR 2016 BUDGET AMENDMENT:

Mayor Donnelly opened the Public Hearing at 7:25 pm. Hearing no comments, the Public Hearing was closed.

AMENDED 2016 BUDGET:

The amended 2016 Budget was submitted for approval. Staff recommended an amendment to the 2016 budget to increase budget authority in the general, street, wastewater and water funds.

MOTION: *Clasen* moved to adopt the amended 2016 budget as published. *Ftizmier* seconded. Motion declared carried.

EAGLES NEST PHASE 2B PAVING BIDS AND CONTRACT:

Bids and a construction contract for paving improvements in Eagles Nest Phase 2B were submitted for Council approval.

City of Moro Trons: Stivers moved to accept the low Dord and approve the construction contract with Cornejo &

Sons, LLC in an amount not to exceed \$252,786.72 and authorize the Mayor to sign. *Reid* seconded. Motion declared carried.

WESTAR EASEMENT AGREEMENTS:

Adjustments to current Westar easement agreements and a temporary easement agreement were submitted for Council approval.

MOTION: *Clasen* moved to approve the temporary and modified easement agreements with Westar and authorize the Mayor to sign. *Fitzmier* seconded. Motion declared carried.

ZONING CASE #Z-04-016 (404 W IRMA):

A request for a zone change from LI Limited Industrial to MF-18 Muli-Family Residential at 404 W. Irma was submitted for Council approval.

MOTION: *Clasen* moved to adopt the ordinance for a zone change within Maize city limits. *Reid* seconded. Motion declared carried.

City Clerk assigned Ordinance #927.

RESCINDING SNOW REMOVAL, TWO-WAY RADIO AND CABLE TELEVISION POLICIES:

A recommendation to rescind the policies for snow removal, two-way radios and the cable television channel was submitted for Council approval.

MOTION: *Clasen* moved to rescind the Snow Removal, Two-Way Radio and Cable Television policies.

Stivers seconded. Motion declared carried.

PERSONNEL POLICY MANUAL REVISIONS:

The revised Personnel Policy was submitted Council approval.

MOTION: *Clasen* moved to adopt the revised Personnel Policy with the following changes:

- 1. Approval of the School Resource Officer job description
- 2. Reformatting of the job descriptions
- 3. Technical corrections with no content change

Fitzmier seconded. Motion declared carried.

ADJOURNMENT:

With no further business before the Council,

MOTION: *Clasen* moved to adjourn. *McCreath* seconded. Motion declared carried. Meeting adjourned.

Respectfully submitted by:

Jocelyn Reid, City Clerk City of Maize, Kansas

MINUTES-SPECIAL MEETING MAIZE CITY COUNCIL Wednesday, November 30, 2016

The Maize City Council met in a special meeting at 11:00 a.m., Wednesday November 30, 2016 in the Maize City Hall, 10100 Grady Avenue, with *Mayor Clair Donnelly* presiding. Councilmembers present were *Donna Clasen, Karen Fitzmier*, and *Alex McCreath*. *Pat Stivers* and *Kevin Reid* were absent.

Also present were: *Richard LaMunyon*, City Administrator; *Rebecca Bouska*, Deputy City Administrator; *Jocelyn Reid* City Clerk, *Sue Villarreal*, City Treasurer and *Jolene Graham*, Executive Assistant.

APPROVAL OF AGENDA:

The agenda was submitted for Council approval.

MOTION: *Clasen* moved to approve the Agenda as presented. *McCreath* seconded. Motion declared carried.

PUBLIC HEARING FOR THE REVISED FLOODPLAIN ORDINANCE:

Mayor Donnelly opened the Public Hearing at 11:10 a.m. Hearing no comments, the Public Hearing was closed.

ADJOURNMENT:

With no further business before the Council,

MOTION:	<i>Clasen</i> moved to adjourn.			
	<i>McCreath</i> seconded. Motion declared carried.			
	Meeting adjourned.			

Respectfully submitted by:

Jocelyn Reid, City Clerk

MINUTES – REGULAR MEETING MAIZE PARK AND TREE BOARD Tuesday, July 12th, 2016

The Maize Park and Tree Board met in a regular meeting at 5:30 pm, Tuesday, July 12th, 2016 with *Chair Jennifer Herington* presiding. Board members present were *Vice-Chair Dennis Wardell, Secretary Marina Fulton, Hugh Nicks, Nancy Scarpelli, Patrick Atchison* and *Joshua Belcher.*

Also present was: Jolene Graham, Recording Secretary.

APPROVAL OF AGENDA:

The Agenda was submitted for Board approval.

MOTION: *Atchison* moved to approve the agenda with the addition to receive and file additions to the Park Master Plan as an item under New Business. *Wardell* seconded. Motion declared carried.

APPROVAL OF THE MAY 10TH, 2016 MINUTES:

The Park and Tree Board Meeting Minutes of May 10th, 2016 were submitted for approval.

MOTION: *Belcher* moved to approve the minutes. *Scarpelli* seconded. Motion declared carried.

TREES AT THE CEMETERY

Discussion was held regarding the loss of three of the new red bud trees and the probable cause of poor drainage at the cemetery. Board member Nicks demonstrated the water damage of a redbud truck.

MOTION: *Nicks* moved for staff to research options and resolve if possible. *Scarpelli* seconded. Motion declared carried.

RECEIVE AND FILE ADDITION TO THE MASTER PARK PLAN

Discussion was held regarding the revisions submitted by Scarpelli to the Master Park Plan and development of the remaining sections. Workshops will be held for the Park and Tree board to better facilitate the development of the Master Park Plan. The goal is to finalize a plan in December 2016.

MOTION: *Belcher* moved to receive and file the New Master Park Plan section revisions.

Wardell seconded. Motion declared carried.

ADJOURNMENT:

With no further business before the Board:

MOTION: *Nicks* motioned to adjourn. *Fulton* seconded. Motion declared carried.

Meeting adjourned at 6:40 pm

Approved by the Park and Tree Board on <u>December 13</u> 2016.

Thee Board Mer Park and

Sialian

Recording Secretary

MINUTES-REGULAR MEETING MAIZE CITY PLANNING COMMISSION AND BOARD OF ZONING APPEALS THURSDAY, OCTOBER 6, 2016

The Maize City Planning Commission was called to order at 7:00 p.m., on Thursday, October 6, 2016, for a Regular Meeting with **Bryan Aubuchon**, presiding. The following Planning Commission members were present: **Mike Burks**, **Bryant Wilks**, **Andy Sciolaro**, **Dennis Downes**, **Bryan Aubuchon** and **Jennifer Herington**. Also present were **Sue Villarreal**, Recording Secretary; **Kim Edgington**, Planning Administrator; **Richard LaMunyon**, City Administrator; **Chad Mohr**, Applicant.

APPROVAL OF AGENDA

MOTION: *Herington* moved to approve the agenda as submitted. *Downes* seconded the motion. Motion carried unanimously.

APPROVAL OF MINUTES

MOTION: *Sciolaro* moved to approve the September 1, 2016 minutes with the addition of: "displayed on plat" to item E. of Z-03-016 conditions. *Downes* seconded the motion. Motion carried unanimously.

NEW BUSINESS – PLANNING COMMISSION

Z-04-016-ZONE CHANGE REQUEST FOR – APPROXIMATELY 0.42 ACRES FROM LI LIMITED INDUSTRIAL TO MF-18 MULTI-FAMILY RESIDENTIAL AT 404 W IRMA

Edgington explained that the property is currently zoned as Limited Industrial. The current Zoning Code does not allow any type of residential structures within LI zoning making the current structure a legal non-conforming use. The property owner would like to rezone to MF-18 multi-family residential to accommodate the existing use and to allow the addition of a du-plex or tri-plex.

- **MOTION:** *Wilks* moved to approve Z-04-016 zone change for approximately 0.42 acres from LI Limited Industrial to MF-18 Multi-family residential subject to the following findings:
 - 1. <u>The zoning, uses and character of the neighborhood</u>: This property is located within an area that is currently residential in character, with small-scale mixed commercial and multi-family uses nearby. The type of proposed use could be compatible with existing development in the area.
 - 2.<u>The suitability of the subject property for the uses to which it has been restricted</u>: The property is zoned for industrial but has remained undeveloped for many years under its current zoning.

- 3.<u>Extent to which removal of the restrictions will detrimentally</u> <u>affect nearby property:</u> There are no expected negative effects on nearby properties.
- 4. <u>Conformance of the requested change to the adopted or recognized</u> <u>Comprehensive Plan and Policies</u>: The City of Maize Comprehensive Plan contemplates that this property is appropriate for urban residential development.
- 5.<u>Impact of the proposed development on community facilities</u>: The requested zone change would introduce an appropriate land use to this area. The City's municipal service systems have been designed to adequately support this type of development. Municipal water and sewer service are available at this location.

And subject to the following protective overlay set forth by commissioners:

Property will be limited to a maximum of 6 units.
 Wilks seconded the motion.
 Motion carried unanimously.

ADJOURNMENT:

MOTION: With no further business before the Planning Commission, *Downes* moved to adjourn. *Wilks* seconded the motion Motion carried unanimously.

Meeting adjourned at 7:40 PM.

ilarria V Sue Villarreal

Recording Secretary

Bryan Aubuchon Chairman

			City of Maize					
		Disbursement Report Totals						
	Disbursement Report Totals							
	├──		Dates Covere	1/01/2010 - 11/30	12010			
Accounts Payable:	├							
Accounts Payable.								
Voucher		Voucher	Check		Check	Check N	umbers	
Date		Amt	Date		Amount	Begin	End	
2-Nov	\$	259.44	3-Nov	\$	258.44	63465	63466	Utilities
3-Nov	–	9,841.12	3-Nov		9,841.12	63467	63469	Utilities
3-Nov		89,499.85	4-Nov	¥	89,499.85	63470	63521	
8-Nov		7,756.77	8-Nov		7,756.77	63522	63528	Utilities
16-Nov		104,872.69	21-Nov		104,872.69	63542	63584	
22-Nov		329.46	22-Nov		329.46	63585	63585	Utilities
AP Total	\$	212,559.33		\$	212,558.33			
Payroll:								
	<u> </u>							
Run		Earning	Check		Check	Check N	umbers	
Date		History	Date		Amount	Begin	End	
14-Dec	\$	126,220.14	3-Nov	\$	73,088.14	63453	63464	
	–	0,0	17-Nov	¥	99,766.71	63529	63541	
						00020		
KPERS Employer Portion		9,859.84						
FICA Employer Portion		9,025.50						
Health/Dental Insurance		0,020100						
(Employer Portion)		27,749.37						
PR Total	\$	172,854.85		\$	172,854.85			
	-	,		Ŧ				
	AP)		\$	212,558.33			1
	PR			¥	172,854.85			1
		Total Disbursen	nents	\$	385,413.18			
				٣				
		haals Norres		4 k. †				
	Check Numbers used			this	s perioa:			
	#63453 thru #63585							
							1	
								1
	<u> </u>							

CITY OF MAIZE

Bank Reconciliation Report For November 2016

BEGIN		ENID
		END
FUND NAME PERIOD RECEIPTS DISBUT	RSEMENTS	PERIOD
01 General Fund \$ 421,117.49 \$ 155,244.54 \$ 2	50,226.33 \$	326,135.70
02 Street Fund 165,931.85 14,307.00	10,768.62	169,470.23
04 Capital Improvements Fund 145,724.81 40,950.24	72,474.06	114,200.99
05 Long-Term Projects (48,644.78) -	88.95	(48,733.73)
10 Equipment Reserve Fund 104,408.16 19,191.42	-	123,599.58
11 Police Training Fund 2,663.50 367.84	-	3,031.34
12 Municipal Court Fund 27,136.90 1,356.05	-	28,492.95
16 Bond & Interest Fund 5,544.10 53,640.90	-	59,185.00
19 Wastewater Reserve Fund 152,621.26 3,000.00	-	155,621.26
20 Wastewater Treatment Fund 712,119.82 66,910.35	58,063.44	720,966.73
21 Water Fund 557,157.60 64,811.75	50,530.53	571,438.82
22 Water Reserve Fund 143,148.81 3,000.00	-	146,148.81
23 Water Bond Debt Reserve Fund 268,000.00 -	-	268,000.00
24 Wastewater Bond Debt Reserve Fund 147,800.09 -	-	147,800.09
32 Drug Tax Distribution Fund 2,404.57	-	2,404.57
38 Cafeteria Plan 3,310.35 1,180.90	3,104.88	1,386.37
76 Bond Refundings (40,881.37) -	-	(40,881.37)
98 Maize Cemetery 160,377.01 951.21	1,665.55	159,662.67
Totals All Fund \$ 2,929,940.17 \$ 424,912.20 \$ 4	46,922.36 \$	2,907,930.01
Bank Accounts and Adjustments		
Halstead Checking Account \$ 725,445.71 \$ 301,740.21 \$ 4	40,120.42 \$	587,065.50
Outstanding Items	\$	5,716.15
Halstead Bank Money Market Account 2,154,707.20 778.49	-	2,155,485.69
Maize Cemetery CD 85071 91,302.69 -	-	91,302.69
Maize Cemetery Operations69,074.32951.21	1,665.55	68,359.98
Totals All Banks \$ 3,040,529.92 \$ 303,469.91 \$ 4	41,785.97 \$	2,907,930.01

CITY OF MAIZE

Cash and Budget Position

Thru November 30, 2016

			The woverno	2010					
					ANNUAL			REMAINING	REMAINING
	BEGINNING	MONTH	MONTH	END MONTH	EXPENSE	YTD	YTD	EXPENSE	BUDGET
NAME	CASH BALANCE	RECEIPTS	DISBURSEMENTS	CASH BALANCE	BUDGET	REVENUE	EXPENSE	BUDGET	PERCENTAGE
01 General Fund	\$ 421,117.49 \$	155,244.54	\$ 250,226.33	\$ 326,135.70	\$ 3,534,297.00	\$ 3,287,425.08	\$ 3,350,528.05	\$ 183,768.95	5.20%
02 Street Fund	165,931.85	14,307.00	10,768.62	169,470.23	302,000.00	300,845.28	282,379.72	19,620.28	6.50%
04 Capital Improvements Fund	145,724.81	40,950.24	72,474.06	114,200.99	665,000.00	450,035.74	688,286.03	99,457.37	14.96%
05 Long-Term Projects	(48,644.78)	-	88.95	(48,733.73)	-	929,426.30	696,534.69		
10 Equipment Reserve	104,408.16	19,191.42	-	123,599.58	230,000.00	214,362.45	205,325.98	24,674.02	10.73%
11 Police Training Fund	2,663.50	367.84	-	3,031.34	2,000.00	3,534.85	1,772.50	227.50	11.38%
12 Municipal Court Fund	27,136.90	1,356.05	-	28,492.95	-	26,881.45	15,547.59		
16 Bond & Interest Fund	5,544.10	53,640.90	-	59,185.00	2,552,350.00	2,215,522.78	2,384,032.69	168,317.31	6.59%
19 Wastewater Reserve Fund	152,621.26	3,000.00	-	155,621.26	-	33,000.00	10,764.68		
20 Wastewater Treatment Fund	712,119.82	66,910.35	58,063.44	720,966.73	763,200.00	843,404.73	721,000.57	42,199.43	5.53%
21 Water Fund	557,157.60	64,811.75	50,530.53	571,438.82	837,540.00	857,501.70	719,604.78	117,935.22	14.08%
22 Water Reserve Fund	143,148.81	3,000.00	-	146,148.81	-	33,000.00	-	-	
23 Water Bond Debt Reserve Fund	268,000.00	-	-	268,000.00	-	-	-		
24 Wastewater Bond Debt Reserve Fund	147,800.09	-	-	147,800.09	-	-	-		
32 Drug Tax Distribution Fund	2,404.57	-	-	2,404.57	-	-	-		
38 Cafeteria Plan	3,310.35	1,180.90	3,104.88	1,386.37	-	12,474.90	16,368.24		
76 Bond Refundings	(40,881.37)	-	-	(40,881.37)			40,881.37		
98 Maize Cemetery	160,377.01	951.21	1,665.55	159,662.67	161,706.00	37,937.74	35,520.92	126,185.08	78.03%
Report Totals	\$ 2,929,940.17 \$	424,912.20	\$ 446,922.36	\$ 2,907,930.01	\$ 9,048,093.00	\$ 9,245,353.00	\$ 9,168,547.81	\$ 782,385.16	8.65%

MAIZE CITY COUNCIL REGULAR MEETING MONDAY, December 19, 2016

AGENDA ITEM #8A

ITEM: AGRI ENVIRONMENTAL SERVICES SLUDGE REMOVAL AGREEMENT

BACKGROUND:

The City has contracted with Agri Environmental Services, LLC (formerly Agri Enterprises) since January 1, 2007, to provide services to remove sludge from the wastewater treatment plant.

The original agreement expired December 31, 2011. A new five-year agreement was effective January 1, 2012 and will expire on December 31, 2016.

The agreement before you is a renewal of the previous agreement with Agri Environmental Services, LLC.

The new agreement is effective January 1, 2017 and is for a five-year term unless either party terminates the agreement early.

FINANCIAL CONSIDERATIONS:

Cost for services increases from \$0.03/gallon to \$0.035/gallon of sludge hauled.

LEGAL CONSIDERATIONS:

Approved as to form by the City Attorney

RECOMMENDATION/ACTION:

Approve the agreement with Agri Environmental Services, LLC and authorize the Mayor to sign.

AGREEMENT FOR SLUDGE REMOVAL

THIS AGREEMENT entered into on 1st day of January, 2017, by and between Agri Environmental Services, LLC ("Agri Environmental") and the City of Maize, Kansas (the "City").

RECITALS

WHEREAS, the City operates a Wastewater Treatment Plant; and

WHEREAS, the Wastewater Treatment Plant produces sludge which must be disposed of in a manner that complies with regulations and guidelines of the Kansas Department of Health and Environment ("KDHE") and other federal, state and local regulatory agencies; and

WHEREAS, Agri Environmental is in the business of and is otherwise qualified to remove, transport and dispose of sludge that is produced from wastewater treatment plants; and

WHEREAS, the City desires to renew its contract with Agri Environmental, that terminates December 31st, 2016, to remove, transport and dispose of sludge that is produced by the City's Wastewater Treatment Plant,

NOW, THEREFORE, for the consideration and for the mutual covenants and promises set forth herein, the parties hereto agree as follows:

Section 1. Removal, Transport and Disposal. In accordance with the terms and conditions herein, Agri Environmental shall remove, transport and dispose of sludge produced by the City's Wastewater Treatment Plant.

Section 2. Compensation and Billing. The City shall pay Agri Environmental the sum of 3.5 cents (\$.035) per gallon of sludge that is removed, transported and disposed of by Agri Environmental in accordance with terms and conditions of this Agreement. Agri Environmental shall submit an invoice to the City on a monthly basis by the 10th day of each month based upon the duplicate copy of the Agri Environmental load sheets that are to be submitted to the City by Agri Environmental as required in Section 8 herein. The City shall pay Agri Environmental on a monthly basis within fifteen (15) days of receiving an invoice from Agri Environmental.

Section 3. Termination. The term of this Agreement shall be for a period of five (5) years commencing January 1, 2017, subject to the following:

- (a) The City shall have the right to terminate this Agreement at any time, with or without cause, by providing Agri Environmental thirty (30) days advance written notice;
- (b) Agri Environmental shall have the right to terminate this Agreement with cause after it provides the City forty-five (45) days advance written notice (that identifies the default) if the City fails to cure the default within such forty-five (45) day period;
- (c) Agri Environmental shall have the right to terminate this Agreement without cause by

providing the City one hundred and eighty (180) days advance written notice; and

(d) At the end of the five (5) year term the parties, by mutual agreement, subject to revisions to the Agreement as agreed by the parties, may agree to renew this Agreement for an additional term as determined by the parties at such time.

Section 4. Overall Management. Agri Environmental shall provide the necessary management services in accordance with guidelines and regulations of KDHE and other federal, state and local agencies, which outline the procedures for the proper removal, transport and disposal of City sludge including land application of such sludge.

Section 5. Acceptance of Sludge. Agri Environmental shall accept from the City municipal sludge that is suitable for beneficial use in a land application program as determined by the regulations and guidelines of KDHE. The acceptance of sludge by Agri Environmental does not release the City for the ultimate responsibility for the sludge under the laws of the State of Kansas and rules and regulations of the Environmental Protection Agency ("EPA").

Section 6. Sludge Loading and Transport. Agri Environmental shall provide the necessary labor and equipment to efficiently and safely load sludge and to transport sludge away from the City Wastewater Treatment Plant to approved land application disposal sites.

Section 7. Frequency of Sludge Removal. Agri Environmental shall remove the sludge at a frequency that the Wastewater Treatment Plant shall not be operationally impaired due to the extent of excessive sludge in the City's Wastewater Treatment Plant. Agri Environmental shall respond to remove sludge from the City Wastewater Treatment Plant within twenty-four (24) hours of receiving a request to remove sludge from the City.

Section 8. Determination of Gallons Removed. Agri Environmental shall provide the City with duplicate copies of the Agri Environmental load sheet which details the following: date of removal, time truck left the Plant, truck number (if any), name of driver, gallons of sludge loaded onto the vehicle, name of farmer and approved field identification number, number of acres acceptable for use in the field. The original load sheet(s) after a load has been removed, transported and applied to land will be signed by an authorized Agri Environmental employee and an authorized City representative prior to billing the City for the quantity of sludge removed. One (1) copy of the load sheet(s) will remain with the City and one (1) copy will remain with Agri Environmental.

Section 9. Acquisition of Sites for Disposal. Agri Environmental shall be responsible for locating parcels of land on which City sludge can be applied, and Agri Environmental shall provide the legal description, crop, yield, and size of field on which the sludge shall be disposed prior to any sludge being disposed of on such land..

Section 10. Land Applications of Sludge. Agri Environmental shall provide labor and equipment to properly remove, transport and apply the sludge to acceptable land application sites at agronomic rates in accordance with KDHE regulations and in accordance with other federal, state and local laws and regulations.

Section 11. Monthly Reports. Agri Environmental shall complete and file in a timely manner reports as required by KDHE. These reports and records shall be maintained for the specified time period as required by KDHE by Agri Environmental and shall be provided to the City on a monthly basis. Reports shall be submitted to the City by the tenth (10th) day of each month for sludge removed from the Plant and applied to land during the previous month. KDHE requires an annual sludge report due January 1 of each year, which shall be filed by the City based upon such monthly reports received from Agri Environmental.

Section 12. Laboratory Analysis. The City shall obtain sludge samples and be responsible for all 40 C.F.R. § 503 required sludge testing. The City shall provide results to Agri Environmental within ten (10) days of receipt of analysis.

Section 13. Review of Operations. Agri Environmental shall allow the City to inspect any and all proposed or approved land application sites used for disposal of the City's sludge. Agri Environmental shall allow the City to monitor daily operations with respect to the disposal of the City's sludge.

Section 14. Agronomic Services. Agri Environmental shall provide management services which include the location and permitting of suitable farmland for the exclusive use of the City's sludge. These application sites shall meet the requirements for land application sites as determined by KDHE rules and regulations and federal, state and local laws rules and regulations. Proposed farmland application sites shall be properly documented as specified by KDHE. Agri Environmental shall also be responsible for the soil sampling an analysis for applied sites.

Section 15. Emergency Response. In the event of a spill or regulatory problem involving sludge from the City, Agri Environmental shall promptly notify the City. Agri Environmental shall provide for the prompt cleanup of spills that are attributable to Agri Environmental and that occur while Agri Environmental has control of the sludge.

Section 16. Good Faith. If Agri Environmental is unable to remove the sludge from the City Wastewater Treatment Plant due to strikes, acts of God or other occurrences not reasonably within the province or control of Agri Environmental, Agri Environmental will not be liable for any additional costs incurred by the City, and Agri Environmental will not be deemed in default under this Agreement unless thirty (30) days after the impediment has been resolved or eliminated Agri Environmental continues to fail or remove the sludge tendered to it.

Section 17. Indemnification. Agri Environmental shall indemnify and hold the City, its employees and agents, harmless under this Agreement for all claims, damages, costs or expenses or other liability or loss including injury, death, or damages to any person or property related in any way to the performance of this Agreement to the extend such claims, damages, costs, expenses, liability or loss are not caused by the negligent acts, errors or omissions of the City. This provision shall survive the termination of this Agreement.

Section 18. Agri Environmental Due Diligence. Agri Environmental shall exercise the due care in performing its obligations and duties under this Agreement normally and reasonably provided with respect to similar contract services, but Agri Environmental makes no warranty, express or implied, with respect to any services performed hereunder. Agri Environmental shall not be liable for any claim, damage, cost or expense, including attorney fees, caused by malfunction or failure of the Wastewater Treatment Plant or by toxic or hazardous materials entering the Plant and residing in the sludge delivered to Agri Environmental, or any other liability or loss not directly caused by the negligent acts, errors or omissions of Agri Environmental.

Section 19. Insurance Coverage. Agri Environmental shall provide and maintain at all times during the term of this Agreement, the following minimum insurance coverage:

(a) Workers Compensation Insurance in compliance with the statues of the State Kansas, which has jurisdiction of Agri Environmental employees engaged in the performance of services hereunder;

(b) Comprehensive General Liability Insurance with a minimum combined single limit of <u>ONE MILLION DOLLARS (\$1,000,000.00)</u>, including the broad form property damage endorsement.

(c) Agri Environmental will furnish the City with Certificates of Insurance as evidence that policies providing the required coverages and limits are in full force and effect. Agri Environmental shall name the City as an additional insured on its Comprehensive General Liability Insurance. Such policies shall provide that no less than thirty (30) days advance notice of cancellation, termination, or alteration shall be sent directly to Agri Environmental and the City.

(d) The indemnification set forth at Section 17 of this Agreement shall apply to Agri Environmental removal, transport and disposal of the City's sludge by applying to land.

Section 20. Responsibility of Fines. Agri Environmental shall be responsible for the payment of all fines levied by any regulatory agency related to actions taken by Agri Environmental in the removal, transport and disposal of the sludge from the Wastewater Treatment Plant.

Section 21. Additional Services. Expenses for removal of sludge from the Wastewater Treatment Plant which are not routine, as a result of flood, fire, act of God, or other force majeure, civil disturbance or other reasons beyond the control of Agri Environmental, are not covered within the scope of this Agreement. If requested, Agri Environmental shall assist the City in obtaining or providing such additional operation services.

Section 22. Ingress and Egress. The City shall allow ingress and egress to Agri Environmental to facilitate the removal of sludge from the City's Wastewater Treatment Plant.

4

Section 23. Relative Knowledge. The City shall provide necessary information to Agri Environmental relative to the composition of the sludge that is to be land applied. The City shall provide all data and information related to any City "industrial pretreatment program," identifying industrial and commercial providers of wastewater to the City Wastewater Treatment Plant.

Section 24. Sludge Quality. The City shall provide a good quality sludge, processed to KDHE requirements, to Agri Environmental that is acceptable for land application. The City is responsible for the quality of influent into the City's Wastewater Treatment Plant, and also for sludge quality. Sludge with toxic or hazardous characteristics is the responsibility of the City pursuant to EPA regulations. The City shall be expected to enforce their sewer use ordinances to ensure that nothing is discharged into the City's sanitary sewer system to cause the sludge to exceed these standards. The City understands and agrees that Agri Environmental recycles this material into agricultural soil and that it must protect the environment and public health as it does so. In connection therewith, the City shall notify Agri Environmental in a timely manner of sludge quality problems discovered in disposal and in testing, which is the responsibility of the City.

Section 25. Notice. Every notice or other communication authorized or required by this Agreement shall not be effective unless same shall be in writing and sent, postage prepaid, by United States registered or certified mail, return receipt requested, directed to the other party at its address hereinafter provided or such other address as either party may designate by notice given from time to time in accordance herewith:

City:	City of Maize, Kansas 10100 Grady Avenue PO Box 245 Maize, Kansas 67101 Attn: Jocelyn Reid, City Clerk
Agri Environmental:	Agri Environmental Services, LLC Keenan Kelley 11515 W. 109 th N. Sedgwick, Kansas 67135

Section 26. Entire Agreement. This Agreement represents the entire agreement of the parties and may only be modified or amended in a writing signed by both parties.

Section 27. State of Kansas. This Agreement shall be deemed to have been made in Sedgwick County, Kansas, and shall be governed by, and construed in accordance with, the laws of the State of Kansas.

Section 28. Services Personal. The services to be performed by the Agri Environmental under the terms of this Agreement are personal and cannot be assigned, sublet or transferred without specific written consent of the City.

5

Section 29. Severability. If any provision, or any portion thereof, contained in this Agreement are held unconstitutional, invalid, or unenforceable, the remainder of this Agreement, or portion thereof, shall be deemed severable, and shall not be affected and shall remain in full force and effect.

Section 30. Anti-Discrimination Clause. Agri Environmental agrees: (a) to comply with the Kansas Act Against Discrimination (K.S.A. 44-1001 *et seq.*) and the Kansas Age Discrimination in Employment Act (K.S.A. 44-1111 *et seq.*) and the applicable provisions of the Americans With Disabilities Act (42 U.S.C. 12101 *et seq.*) (ADA) and to not discriminate against any person because of race, religion, color, sex, disability, national origin or ancestry, or age in the admission or access to, or treatment or employment in, its programs or activities; (b) to include in all solicitations or advertisements for employees, the phrase "equal opportunity employer"; (c) to comply with the reporting requirements set out at K.S.A. 44-1031 and K.S.A. 44-1116; (d) to include those provisions in every subcontract or purchase order so that they are binding upon such subcontractor or vendor; (e) that a failure to comply with the reporting requirements of (c) above or if the contractor is found guilty of any violation of such acts by the Kansas Human Rights Commission, such violation shall constitute a breach of contract and the contract may be cancelled, terminated or suspended, in whole or in part, by the City; (f) if it is determined that the contract and the contract may be cancelled, terminated or suspended, in whole or in part, by the City; in whole or in part, by the City.

Parties to this contract understand that the provisions of this Section 30 (with the exception of those provisions relating to the ADA) are not applicable to a contractor who employs fewer than four (4) employees during the term of such contract or whose contracts with the City cumulatively total Five Thousand Dollars (\$5,000.00) or less during the fiscal year.

IN WITNESS WHEREOF, the parties hereto have made and executed this Agreement as of the ______ day of ______, 2016.

CITY OF MAIZE, KANSAS

AGRI ENVIRONMENTAL SERVICES, LLC

By: _____ Printed Name: Clair Donnelly Title: Mayor By: _____ Printed Name: Keenan Kelley Title: _____

ATTEST:

Jocelyn Reid, City Clerk

MAIZE CITY COUNCIL REGULAR MEETING MONDAY, December 19, 2016

AGENDA ITEM #8B

ITEM: AEROMOD INC. AGREEMENT

BACKGROUND:

On August 1, 2016 the City entered into an agreement with MKEC to provide technical and professional services for the construction of the new wastewater plant addition and the refurbishing of the existing plant.

The process is underway and on schedule.

MKEC is providing weekly meeting and/or updates for city staff.

This stage of the development requires an agreement between the City and Aeromod Inc.

The agreement will establish the cost of equipment, design and calculations to be provided by Aeromod Inc.

It is referred to as an "assumable agreement" in that the control of this agreement will be transferred to the General Contractor.

This General Contractor will be identified later through the bid process.

The timing of this agreement is predicated on the fact that the design and calculations provided by Aeromod Inc are required before the final draft of the construction drawing can be completed by MKEC.

The combination of the Aeromod Inc and MKEC documents will be utilized in the bid process in identifying the General Contractor for the construction phase of the project.

FINANCIAL CONSIDERATIONS:

Cost for the new or "Expansion" phase is \$852,000 with a \$31,000 option. Cost for the "Rehab" phase of the current plant is \$207,000 with options of \$47,000.

Not to exceed total cost with options is \$1,137,000

These costs have been reviewed and approved by MKEC engineers. The Aeromod Inc "Expansion & Rehab" documents are included in the council packet.

Payment for equipment and services will be as services and equipment are required.

The Billing & Payment process includes:

- City staff and MKEC shall review any requests for payment.
- Once reviewed and approved the bill is submitted to KDHE for confirmation.
- The city then receives the KDHE funds (*per loan agreement*) for the payment.

(over)

LEGAL CONSIDERATIONS:

City Attorney, staff, MKEC and Aeromod Inc are in conceptual agreement as to final form for the agreement. (*a draft is included for your review*)

The finalized signed agreement can be provided to Council via e-mail.

RECOMMENDATION/ACTION:

Approve the Aeromod Inc agreement subject to:

- An amount not to exceed \$1,137,000
- The final review of the agreement by the City Attorney
- Endorsement by KDHE
- And authorize the Mayor to sign

This document has important legal consequences; consultation with an attorney is encouraged with respect to its use or modification. This document should be adapted to the particular circumstances of the contemplated Project and the controlling Laws and Regulations.

AGREEMENT BETWEEN BUYER AND SELLER FOR PROCUREMENT CONTRACTS

Prepared by

and

Issued and Published Jointly by

AGC of America THE ASSOCIATED GENERAL CONTRACTORS OF AMERICA Quality People, Quality Projects.

AMERICAN COUNCIL OF ENGINEERING COMPANIES

AMERICAN SOCIETY OF CIVIL ENGINEERS

ASSOCIATED GENERAL CONTRACTORS OF AMERICA

PROFESSIONAL ENGINEERS IN PRIVATE PRACTICE A Practice Division of the NATIONAL SOCIETY OF PROFESSIONAL ENGINEERS This Agreement Between Buyer and Seller for Procurement Contracts has been prepared for use with the Standard General Conditions for Procurement Contracts (EJCDC P-700, 2010 Edition). Their provisions are interrelated, and a change in one may necessitate a change in the others. The suggested wording contained in the Suggested Instructions to Bidders for Procurement Contracts (EJCDC P-200, 2010 Edition), the Suggested Bid Form for Procurement Contracts (EJCDC P-400, 2010 Edition), and the Guide to the Preparation of Supplementary Conditions for Procurement Contracts (EJCDC P-800, 2010 Edition) is also carefully interrelated with the wording of this Agreement.

Copyright © 2010:

National Society of Professional Engineers 1420 King Street, Alexandria, VA 22314-2794 (703) 684-2882 www.nspe.org

American Council of Engineering Companies 1015 15th Street, N.W., Washington, DC 20005 (202) 347-7474 www.acec.org

American Society of Civil Engineers 1801 Alexander Bell Drive, Reston, VA 20191-4400 (800) 548-2723 www.asce.org

Associated General Contractors of America 2300 Wilson Boulevard, Suite 400, Arlington, VA 22201-3308 (703) 548-3118 www.agc.org

The copyright for EJCDC P-520 is owned jointly by the four EJCDC sponsoring organizations listed above. The National Society of Professional Engineers (NSPE) is the Copyright Administrator for the EJCDC documents; please direct all inquiries and requests regarding EJCDC copyrights to NSPE.

NOTE: EJCDC publications may be purchased at www.ejcdc.org, or from any of the four sponsoring organizations above.

EJCDC P-520, Agreement Between Buyer and Seller for Procurement Contracts. Copyright © 2010 National Society of Professional Engineers, American Council of Engineering Companies, American Society of Civil Engineers, and Associated General Contractors of America. All rights reserved.

Page ii

This document contains a suggested format and suggested terms and conditions that will be applicable in most situations. Additional information concerning the use of *this and other* EJCDC Procurement Documents may be found in the Commentary on the EJCDC Procurement Documents (EJCDC P-001, 2010 Edition).

For brevity in the text, the Standard General Conditions for Procurement Contracts (EJCDC P-700, 2010 Edition) will be referred to as "General Conditions."

For brevity in the "Notes to Users" referenced paragraphs of the Suggested Instruction to Bidders (EJCDC P-200, 2010 Edition) are referred to with the prefix "T", those of the Bid Form (EJCDC P-400, 2010 Edition) with the prefix "BF", and those of the General Conditions (P-700, 2010 Edition) or Supplementary Conditions (EJCDC P-800, 2010 Edition) with the prefix "GC" or "SC".

TABLE OF CONTENTS

Article 1 – GOODS AND SPECIAL SERVICES	1
Article 2 – THE PROJECT	1
Article 3 – ENGINEER	1
Article 4 – POINT OF DESTINATION	1
Article 5 – CONTRACT TIMES	1
Article 6 – CONTRACT PRICE	2
Article 7 – PAYMENT PROCEDURES	2
Article 8 – INTEREST	3
Article 9 – SELLER'S REPRESENTATIONS	3
Article 10 – CONTRACT DOCUMENTS	4
Article 11 – MISCELLANEOUS	5

AGREEMENT

THIS	AGREEMENT is by and between	City of Maize, Kansas	("Buyer")
and	AERO-MOD, Inc., 7927 US Highw	vay 24, Manhattan, KS 66502-8166	("Seller").

Buyer and Seller hereby agree as follows:

ARTICLE 1 – GOODS AND SPECIAL SERVICES

1.01 Seller shall furnish the Goods and Special Services as specified or indicated in the Contract Documents.

ARTICLE 2 – THE PROJECT

2.01 The Project, of which the Goods and Special Services may be the whole or only a part, is identified as follows:

Facility improvements for the Wastewater Treatment Plant to include: 1) 0.600 MGD Expansion, and 2) Existing Basin Rehabilitation

ARTICLE 3 – ENGINEER

The Contract Documents for the Goods and Special Services have been prepared by <u>MKEC Engineering, Inc.</u> ("Engineer"), which is to act as Buyer's representative, assume all duties and responsibilities, and have the rights and authority assigned to Engineer in the Contract Documents in connection with Seller's furnishing of Goods and Special Services.

ARTICLE 4 – POINT OF DESTINATION

4.01 The Point of Destination is designated as: 5600 N. Maize Road, Maize, KS 67101.

ARTICLE 5 – CONTRACT TIMES

- 5.01 *Time of the Essence*
 - A. All time limits for Milestones, if any, including the submittal of Shop Drawings and Samples, the delivery of Goods, and the furnishing of Special Services as stated in the Contract Documents, are of the essence of the Contract.

5.02 *Milestones*

A. *Date for Submittal of Shop Drawings and Samples:* Seller shall submit all Shop Drawings and Samples required by the Contract Documents to Buyer for Engineer's review and approval on or before January 13, 2017. It is the intent of the parties that (1) Engineer conduct such review and issue its approval, or a denial accompanied by substantive comments regarding information needed to gain approval, within <u>14</u> days of Seller's submittal of such Shop Drawings and Samples; and (2) resubmittals be limited whenever possible. If more than one resubmittal is necessary for reasons not the fault

and beyond the control of Seller, then Seller shall be entitled to seek appropriate relief under Paragraph 7.02.B of the General Conditions.

B. *Date for Delivery of Goods:* The Goods are to be delivered to the Point of Destination and ready for Buyer's receipt of delivery on (or within a period of 15 days prior to) June, 2017 based on final construction schedule, as coordinated w/construction contractor.

5.03 Buyer's Final Inspection

- A. Days to Achieve Final Inspection: Buyer shall make its final inspection of the Goods pursuant to Paragraph 8.01.C of the General Conditions within <u>14</u> days after Buyer's acknowledgement of receipt of delivery of the Goods and Seller's completion of furnishing Special Services, if any.
- 5.04 *Liquidated Damages*
 - A. Buyer and Seller recognize that Buyer will suffer financial loss if the Goods are not delivered at the Point of Destination and ready for receipt of delivery by Buyer within the times specified in Paragraph 5.02 above, plus any extensions thereof allowed in accordance with Article 7 of the General Conditions. The parties also recognize that the timely performance of services by others involved in the Project is materially dependent upon Seller's specific compliance with the requirements of Paragraph 5.02. Further, they recognize the delays, expense, and difficulties involved in proving the actual loss suffered by Buyer if complete acceptable Goods are not delivered on time. Accordingly, instead of requiring such proof, Buyer and Seller agree that as liquidated damages for delay (but not as a penalty) Seller shall pay Buyer \$500 for each day that expires after the time specified in Paragraph 5.02.B for delivery of acceptable Goods.

ARTICLE 6 – CONTRACT PRICE

- 6.01 Buyer shall pay Seller for furnishing the Goods and Special Services in accordance with the Contract Documents as follows:
 - A. The prices stated in Seller's Bid, attached hereto as an exhibit and summarized below.
 - 1. Plant Expansion: \$852,000, plus a \$31,000 option for control improvements (\$883,000 Total)
 - 2. Basin Rehab: \$207,000, plus a \$36,000 option for control improvements and a \$11,000 option for RAS hood covers (\$254,000 Total)

ARTICLE 7 – PAYMENT PROCEDURES

- 7.01 Submittal and Processing of Payment
 - A. Seller shall submit Applications for Payment in accordance with Article 10 of the General Conditions. Applications for Payment will be processed by Engineer as provided in the General Conditions.

- A. Buyer shall make progress payments on account of the Contract Price on the basis of Seller's Applications for Payment as follows:
 - 1. Upon receipt of the first Application for Payment submitted in accordance with Paragraph 10.01.A.1 of the General Conditions and accompanied by Engineer's recommendation of payment in accordance with Paragraph 10.02.A of the General Conditions, an amount equal to <u>10</u> percent of the Contract Price, less such amounts as Engineer may determine in accordance with Paragraph 10.02.A.3 of the General Conditions.
 - 2. Upon receipt of the second such Application for Payment accompanied by Engineer's recommendation of payment in accordance with Paragraph 10.01.A.2 of the General Conditions, an amount sufficient to increase total payments to Seller to <u>90</u> percent of the Contract Price, less such amounts as Engineer may determine in accordance with Paragraph 10.02.A.3 of the General Conditions.

7.03 Final Payment

A. Upon receipt of the final Application for Payment accompanied by Engineer's recommendation of payment, Buyer shall pay Seller the amount recommended by Engineer, less any sum Buyer is entitled to set off against Engineer's recommendation, including but not limited to liquidated damages.

ARTICLE 8 – INTEREST

8.01 All monies not paid when due as provided in Article 10 of the General Conditions shall bear interest at the statutory rate.

ARTICLE 9 – SELLER'S REPRESENTATIONS

- 9.01 In order to induce Buyer to enter into this Agreement, Seller makes the following representations:
 - A. Seller has examined and carefully studied the Contract Documents and the other related data identified in the Bidding Documents, as applicable to Seller's obligations identified in Article 1 above.
 - B. If required by the Bidding Documents to visit the Point of Destination and site where the Goods are to be installed or Special Services will be provided, or if, in Seller's judgment, any local condition may affect cost, progress, or the furnishing of the Goods and Special Services, Seller has visited the Point of Destination and site where the Goods are to be installed or Special Services will be provided and become familiar with and is satisfied as to the observable local conditions that may affect cost, progress, and the furnishing of the Goods and Special Services.
 - C. Seller is familiar with and is satisfied as to all Laws and Regulations that may affect cost, progress, and the furnishing of the Goods and Special Services.

- D. Seller has carefully studied, considered, and correlated the information known to Seller; information commonly known to sellers of similar goods doing business in the locality of the Point of Destination and the site where the Goods will be installed or where Special Services will be provided; information and observations obtained from Seller's visits, if any, to the Point of Destination and site where the Goods are to be installed or Services will be provided; and any reports and drawings identified in the Bidding Documents regarding the Point of Destination and the site where the Goods will be installed or where Special Services will be provided, with respect to the effect of such information, observations, and documents on the cost, progress, and performance of Seller's obligations under the Contract Documents.
- E. Seller has given Engineer written notice of all conflicts, errors, ambiguities, or discrepancies that Seller has discovered in the Contract Documents, and the written resolution (if any) thereof by Engineer is acceptable to Seller.
- F. The Contract Documents are generally sufficient to indicate and convey understanding of all terms and conditions for furnishing Goods and Special Services.

ARTICLE 10 – CONTRACT DOCUMENTS

- 10.01 Contents
 - A. The Contract Documents consist of the following:
 - 1. This Agreement (EJCDC P-520);
 - 2. General Conditions (EJCDC P-700);
 - 3. Exhibits to this Agreement (enumerated as follows):
 - a. Exhibit A-1 to Agreement between Buyer and Seller dated <u>December 2016</u>, Assignment of Contract; Consent to Assignment; and Acceptance of Assignment.
 - c. Seller's Bid, solely as to the prices set forth therein;
 - 4. The following which may be delivered or issued on or after the Effective Date of the Agreement and are not attached hereto:
 - a. Notice to Proceed;
 - b. Change Order(s);
 - c. Work Change Directive(s).
 - B. The documents listed in Paragraph 10.01.A are attached to this Agreement (except as expressly noted otherwise above).
 - C. There are no Contract Documents other than those listed above in this Article 10.

D. The Contract Documents may only be amended, or supplemented as provided in Paragraph 3.04 of the General Conditions.

ARTICLE 11 – MISCELLANEOUS

11.01 Terms

A. Terms used in this Agreement will have the meanings indicated in the General Conditions and the Supplementary Conditions.

11.02 Assignment of Contract

- A. Buyer has the right to assign this Contract for furnishing Goods and Special Services, but only to a person or entity with sufficient ability to satisfy all of Buyer's obligations under this Contract, and Seller hereby consents to such assignment. Forms documenting the assignment of the Contract, and consent of Seller's surety to the assignment, have been executed by Buyer, Seller, and Seller's surety, and are attached as exhibits to this Agreement.
 - The Contract will be executed in the name of Buyer initially, and will be assigned to a construction contractor designated by Buyer. Such construction contractor's responsibilities will include the installation of the Goods. The assignment will occur on the effective date of the agreement between Buyer and the construction contractor, which is expected to occur on or about <u>May 2017</u>. As of the date of acceptance of assignment by the construction contractor, all references in the Contract Documents to Buyer shall mean the designated construction contractor.
 - 2. The assignment of the Contract shall relieve the assignor from all further obligations and liabilities under this Contract. After assignment, Seller shall become a subcontractor or supplier to the assignee and, except as noted herein, all rights, duties, and obligations of Buyer under the Contract shall become the rights, duties, and obligations of the assignee.
 - 3. After assignment:
 - a. All performance warranties, guarantees, and indemnifications required by the Contract Documents will continue to run for the benefit of assignor and, in addition, for the benefit of the assignee. However, if assignor and assignee make the same warranty or guarantee claim, then Seller shall only be liable once for such claim.
 - b. Except as provided in this Paragraph 11.02.A.3.b, all rights, duties_{\pm} and obligations of Engineer to assignee and Seller under this Contract will cease.
 - 1) Engineer will review Seller's Applications for Payment and make recommendations to assignee for payments as provided in Paragraphs 10.02 and 10.06 of the General Conditions.
 - 2) Upon the written request of either the assignee or Seller, Engineer will issue with reasonable promptness clarifications or interpretations of the Contract

Documents pursuant to the terms of Paragraph 9.02.A of the General Conditions.

- B. No other assignment by a party hereto of any rights under or interests in the Contract Documents will be binding on another party hereto without the written consent of the party sought to be bound. Specifically but without limitation, moneys that may become due and moneys that are due may not be assigned without such consent (except to the extent that the effect of this restriction may be limited by Laws and Regulations). Unless specifically stated to the contrary in any written consent to such an assignment, such an assignment will not release or discharge the assignor from any duty or responsibility under the Contract Documents.
- 11.03 Successors and Assigns
 - A. Buyer and Seller each binds itself, its partners, successors, assigns, and legal representatives to the other party hereto, its partners, successors, assigns, and legal representatives in respect to all covenants, agreements, and obligations contained in the Contract Documents.

11.04 Severability

A. Any provision or part of the Contract Documents held to be void or unenforceable under any Law or Regulation shall be deemed stricken, and all remaining provisions shall continue to be valid and binding upon Buyer and Seller. The Contract Documents shall be reformed to replace such stricken provision or part thereof with a valid and enforceable provision that comes as close as possible to expressing the intention of the stricken provision.

11.05 Seller's Certifications

- A. Seller certifies that it has not engaged in corrupt, fraudulent, collusive, or coercive practices in competing for or in executing the Contract. For the purposes of this Paragraph 11.05:
 - 1. "corrupt practice" means the offering, giving, receiving, or soliciting of any thing of value likely to influence the action of a public official in the bidding process or in the Contract execution;
 - "fraudulent practice" means an intentional misrepresentation of facts made (a) to influence the bidding process or the execution of the Contract to the detriment of Buyer, (b) to establish Bid or Contract prices at artificial non-competitive levels, or (c) to deprive Buyer of the benefits of free and open competition;
 - 3. "collusive practice" means a scheme or arrangement between two or more Bidders, with or without the knowledge of Buyer, a purpose of which is to establish Bid prices at artificial, non-competitive levels; and
 - 4. "coercive practice" means harming or threatening to harm, directly or indirectly, persons or their property to influence their participation in the bidding process or affect the execution of the Contract.

11.06 Limitations

- A. Buyer and Seller waive against each other, and against the other's officers, directors, members, partners, employees, agents, consultants, and subcontractors, any and all claims for or entitlement to incidental, indirect, or consequential damages arising out of, resulting from, or related to the Contract. Upon assignment the terms of this Paragraph 11.06.A shall be binding upon the assignee with respect to Seller and assignor. The terms of this mutual waiver do not apply to or limit any claim by either Buyer or Seller against the other based on any of the following: (a) contribution or indemnification, (b) costs, losses, or damages attributable to personal or bodily injury, sickness, disease, or death, or to injury to or destruction of the tangible property of others, (c) intentional or reckless wrongful conduct, or (d) rights conferred by any bond provided by Seller under this Contract.
- B. Upon assignment the terms of this Paragraph 11.06.B shall be binding upon both the assignor and assignee with respect to Seller's liability, and upon Seller with respect to both assignor's and assignee's liabilities. The terms of this mutual limitation do not apply to or limit any claim by either Buyer or Seller against the other based on any of the following: (a) contribution or indemnification with respect to third-party claims, losses, and damages; (b) costs, losses, or damages attributable to personal or bodily injury, sickness, disease, or death, or to injury to or destruction of the tangible property of others, (c) intentional or reckless wrongful conduct, or (d) rights conferred by any bond provided by Seller under this Contract.
- 11.07 Other Provisions

IN WITNESS WHEREOF, Buyer and Seller have signed this Agreement. Counterparts have been delivered to Buyer and Seller. All portions of the Contract Documents have been signed or identified by Buyer and Seller or on their behalf.

This Agreement will be effective on Agreement).	(which is the Effective Date of the
Buyer: <u>CITY OF MAIZE, KANSAS</u>	Seller: <u>AERO-MOD, INC.</u>
By:[Corporate Seal]	_ By:[Corporate Seal]
[Corporate Seal]	[Corporate Seal]
Attest:	Attest:
Address for giving notice:	Address for giving notice:
10100 W. Grady Ave.	7927 US Highway 24
Maize, KS 67101	Manhattan, KS 66502-8166
(If Buyer is a corporation, attach evidence of authority to sign. If Buyer is a public body, attach evidence of authority to sign and resolution or other documents authorizing execution of Buyer-Seller Agreement.)	Agent for service of process:
	(If Seller is a corporation or a partnership, attach evidence of authority to sign.)
Designated Representative:	Designated Representative:
Name:	Name:
Title:	Title:
Address:	Address:
Phone:	Phone:
Facsimile:	Facsimile:

Page 8

EXHIBIT A-1 to Agreement Between Buyer and Seller dated _____

ASSIGNMENT OF CONTRACT; CONSENT TO ASSIGNMENT; AND ACCEPTANCE OF ASSIGNMENT

This assignment will be effective on the Effective Date of the Agreement between Buyer and Construction Contractor.

The Contract between <u>City of Maize, Kansas</u> ("Buyer") and <u>AERO-MOD, Inc.</u> ("Seller") for furnishing Goods and Special Services under the Contract Documents entitled <u>Maize, Kansas</u> <u>WWTF Proposal 0.600 MGD Expansion & Maize, Kansas WWTF Proposal Existing Rehab</u> is hereby assigned, transferred, and set over to _______("Construction Contractor"). Construction Contractor shall be totally responsible for the performance of Seller and for the duties, rights and obligations of Buyer, not otherwise retained by Buyer, under the terms of the Contract between Buyer and Seller.

ASSIGNMENT DIRECTED BY:	<u>CITY OF MAIZE, KANSAS</u>	
	Buyer	
(If Buyer is a corporation, attach evidence of authority to sign. If Buyer is a public body, attach evidence of authority to sign and resolution or other documents authorizing execution of Buyer-Seller Agreement.)	By:(Signature)	(Title)
ASSIGNMENT		
ACKNOWLEDGED AND ACCEPTED BY:	AERO-MOD, INC. Seller	
(If Seller is a corporation, attach	Ву:	
evidence of authority to sign.)	(Signature)	(Title)
ASSIGNMENT ACCEPTED BY:		
	Construction Con	ntractor
(If Construction Contractor is a corporation, attach evidence of authority	By:	

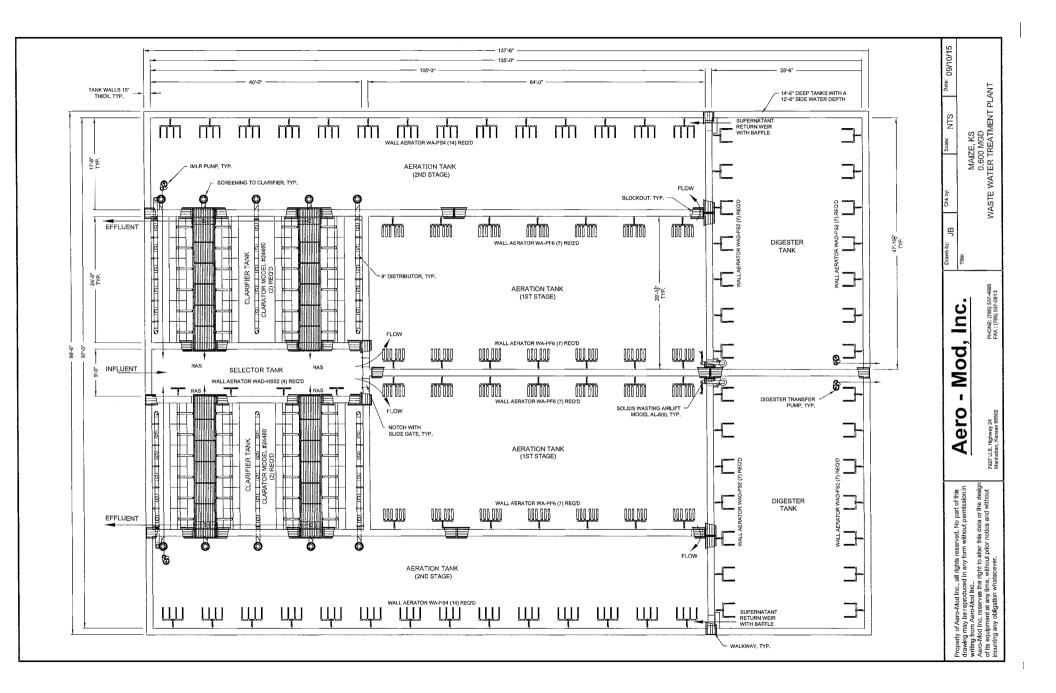
EJCDC P-520, Agreement Between Buyer and Seller for Procurement Contracts. Copyright © 2010 National Society of Professional Engineers, American Council of Engineering Companies, American Society of Civil Engineers, and Associated General Contractors of America. All rights reserved. EXHIBIT A-2 - Page 1

– Sequox® ClarAtor® SR Diffuser Access System _

Maize, KS WWTF Proposal 0.600 MGD Expansion

for

MKEC


December 2016

Aero-Mod, Inc.

7927 U.S. Highway 24 Manhattan, KS 66502 USA *Ph: (*785) 537-4995 *Fax: (*785) 537-0813 Specializing in Custom Designed Wastewater Treatment Facilities-

Aero-Mod, Inc. EQUIPMENT AND SERVICES COST ESTIMATE

Project: Engineer:	Maize, Kansas WWTF Expansion 0.600 mgd MKEC	Date: Units:	13-Dec-16 English				
EQUIPMENT SUPPLIED							
AERATION 0 4 4 1 24 24 24	A EQUIPMENT Aeration pd blower/sound enclosure package SEQUOX aeration control butterfly valve, pneumatically-actua SEQUOX aeration throttling butterfly valve, gear-operated Aeration throttling butterfly valve, gear-operated Wall mounted aeration assembly, Model WA-PF6 Wall mounted aeration assembly, Model WA-PS4-2	PHASE 2 ted - First Stage Aeration Ba - Second Stage Aeration					
SELECTO	R TANK EQUIPMENT						
1 4	Aeration throttling butterfly valve, gear-operated Wall mounted aeration assembly, Model WAD-HSS2						
CLARIFIEI 2	R & RAS EQUIPMENT Aero-Mod Split-ClarAtor Clarifier System - 960 sf/each						
2 2 2 28	N, SLUDGE HOLDING & WAS EQUIPMENT WAS airlift pump, Model AL-600 Aeration control butterfly valve, pneumatically-actuated Aeration control butterfly valve, gear-operated Wall mounted aeration assembly, Model WAD-PS4-2						
ELECTRIC 1 2 1 1 1 1	AL & CONTROLS EQUIPMENT SEQUOX Process Control Panel w/ Allen Bradley PLC, Model IMLR Pump control panels Digester Transfer Pump control panels Saylor-Beall duplex air compressor system, (2) 3 HP with (1) h Air compressor auto-drain - 115 V wall outlet PureGas regenerative desiccant dryer mounted on dry storage D.O. Control System - w/ 4 LDO probes	oriz. 80 gallon tank - 460	V, 3 ph				
ANCILLAR 495 2 2 2 LS LS	Y EQUIPMENT Wall mounted walkway & handrail, LF Wall mounted stop plates & frames Guiderail mounted IMLR Pumps Guiderail mounted Digester Transfet Pump Spare Parts Interior tank installation materials - SS brackets, SS bolts, PVC	c wall inserts, pneumatic t	ubing, misc.				
SERVICES LS LS LS LS	Freight to jobsite Aero-Mod equipment dry inspection, two (2) days Aero-Mod equipment wet start-up, two (2) days Operator training school - 2 days at Aero-Mod facilities in Mani	nattan, KS					
	TOTAL BASE EQUIPMENT COST		\$852,000				
OPTIONAL 4 4	AIR FLOW MANAGEMENT EQUIPMENT Aeration control butterfly valve, electrically-actuated Aeration flow conditioner & flow sensor						
	TOTAL OPTIONAL EQUIPMENT CO	<u>IST</u>	======================================				

Aero-Mod, Inc. ACTIVATED SLUDGE DESIGN CALCULATIONS

<i>Project:</i> Maize, Kansa <i>Engineer:</i> MKEC	as WWTF Expan	sion 0.600 mgd		Date: Units:	13-Dec-16 English
Act. Sludge Process:	SEQUOX			enner	Linghon
DESIGN CONDITIONS &	PARAMETERS		Population Equivalent	7506	
	Influent	Clarifier Effluent	@0.2lbsBOD/cap		
Flow (Q), MGD	0.600		Aeration Basin		
BOD ₅ , mg / l	300	10.0	Retention Time, hours	6	27.7
BOD ₅ , lbs/day	1,501	50.0	Aeration Tank Volume	e, Mgal	0.693
BOD _L , mg/l	439		MCRT, days		18.0
TSS, mg/l	300	10.0	Wastewater Temperat	ture, ⁰C	10
TSS, lbs/day	1,501	50.0	Aerobic Digester		
Ammonia-N, mg/l	43.6	1.0	Volume, % of Aeratior	n Tank	38.0
Ammonia-N, lbs/day	218.2	5.0	Maximum MLSS, mg/l		12,000
TN, mg/l		8.0 **	Maximum MLSS, %		1.20%
TN, lbs/day		40.0	Digester Temperature	, °C	10
Phosphorus-P, mg/l	8.0	1.0 *	Sludge Holding Tank		

5.0

(243)

Volume, % of Aeration Tank

Maximum MLSS, mg/l

Maximum MLSS, %

Net Alkalinity Loss, mg/l as $CaCO_3$ * Assumes Chemical Addition

40.0

** Assumes rDON less than 2 ppm

PROJECTED OPERATING CONDITIONS - AERATION BASIN

Mixed Liquor Suspended Solids, mg/l	3,680
Excess MLSS due to Phos-P Uptake/Removal, mg/l 164	700/
Mixed Liquor Volatile Suspended Solids, %	70%
F/M Ratio, lbs BOD ₅ /lb MLVSS	0.10
F/M Ratio, lbs BOD ₅ /lb MLSS	0.07
Organic Loading, lbs BOD ₅ /1000 cf of tank/day	16.2
Oxygen Requirements (Carbonaceous), mg/l/hr	9.35
Oxygen Requirements (Nitrogenous), mg/l/hr	7.07
Solids Production, lbs/day	1,181
WAS - Solids Wasted per Day, Ibs/day	1,131
WAS - Solids Wasted per Day, gal/day @ 0.37%	36,842

PROJECTED OPERATING CONDITIONS - AEROBIC DIGESTER

Volatile Solids Reduction in Digester, %	32%
Solids Wasted from Digester, lbs/day	879
Mass Solids Yield in Process & Digester per Mass Influent BOD ₅ , %	62%
Volume Wasted from Digester, gallons/day	8,786
Digester Sludge Age, days	30
Air Required for Stabilization, cfm	351
Air Required for Mixing @ 30 cfm/1000 cf	1,055

Phosphorus-P, lbs/day

0.0

25,000

2.50%

Aero-Mod, Inc.

Project: Maize, Kansas WWTF Expansion 0.600 mgd Engineer: MKEC Diffuser Type Used: Tubular EPDM Fine Bubble		Date: Units:	13-Dec-16 English
Q, MGD 0.600 TKN.	ma/l		60.0
BOD _o , mg/l 300 TKN _e ,			2.0
	_{ssimilation} , mg/l		14.5
	_m , mg/l		60.0
O ₂ Requirement, lb O ₂ /lb BOD _{rem} 1.200 O ₂ Re	equirement, lb O ₂ /lt	TKN _{rem}	4.60
AERATION REQUIREMENTS - FIRST STAGE			
BOD _{oxy} - Oxygen Required for BOD [Q * BOD _{rem} * 8.34 * O ₂ Rec	ı / 241 lbs ∩₀/br	48.8	Consumption 65%
TKN _{oxy} - Oxygen Required for TKN [Q * TKN _{rem} * 8.34 * O ₂ Req. i		37.4	
Actual Oxygenation Rate (AOR), Ibs O ₂ /hr	,, <u>-</u>	86.2	
Standard Oxygenation Rate (SOR), lbs O ₂ /hr SOR = [(AOR * C _{s.20}) / (α * $\Theta^{A(T-20)}$ * (Tau * Ω * β	* C _{s,20} - C _L) * F)]	228.0	
Where: $C_{s.T.H}$ Actual Value of D.O. Saturation, mg/l		9.08	
$C_{s,20}$ Steady State Value of D.O. Saturation, I	mg/l	9.08	
lpha Alpha - Oxygen Transfer Correction Fac	ctor for Waste	0.65	
 Theta - Oxygen Transfer Coefficient 		1.024	
T Temperature of Water, ℃ Tau Oxygen Saturation Value (C _{s.T.H} /C _{s.20})		20 1.000	
β Beta - Salinity-Surface Tension Correcti	on Factor	0.95	
P_{H} Atmospheric Pressure at Site Elevation,	psi/FASL	13.99	1,350
Ω Omega (P _H /P _s)		0.952	
F Fouling Factor C _L Residual D.O. Concentration, mg/l		0.85 2.0	
Air Requirement = [SOR / (Oxygen Density * TE% * Diffuser Dep	th) / 60], scfm	987	
Where: Oxygen Density, lbs O ₂ /cf		0.0175	
Transfer Efficiency per Foot of Submergence, % Diffuser Depth Below Water Surface, ft	6	2.00% 11.0	
Denitrification Credit = [Air Rqmt * (TKN _{oxy} / AOR) * 50% * ((TKN _o Where: TN _e = TKN _o / 2 (assumed when D.O. control is r Total Aeration Required in Aeration Basin, scfm		fm 	185
Where: TN _e = TKN _e / 2 (assumed when D.O. control is r Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [((T _{std} + 460) / (T _{air} + 460)) * ((P _H - (RH% * SVP _{Tai}	not used) 801		
Where: $TN_e = TKN_o / 2$ (assumed when D.O. control is r Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [(($T_{std} + 460$) / ($T_{air} + 460$)) * (($P_H - (RH\% * SVP_{Tair})$ Where: $T_{std} = 68^{\circ}F$	not used) 801		
Where: $TN_e = TKN_o / 2$ (assumed when D.O. control is r Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [(($T_{std} + 460$) / ($T_{air} + 460$)) * (($P_H - (RH\% * SVP_{Tair})$ Where: $T_{std} = 68^{\circ}F$ $RH\%_{std} = 36\%$	not used) 801		
$\label{eq:Where: TN_e} = TKN_o / 2 \mbox{ (assumed when D.O. control is r} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH\% * SVP_{Tail} + 460)) * (P_{H} -$	not used) 801	:* SVP _{std}))) *	
Where: $TN_e = TKN_o / 2$ (assumed when D.O. control is r Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [(($T_{std} + 460$) / ($T_{air} + 460$)) * (($P_H - (RH\% * SVP_{Tair})$ Where: $T_{std} = 68^{\circ}F$ $RH\%_{std} = 36\%$ $SVP_{std} = 0.34 psi$ $T_{air} - Maximum Air Temperature, °F$	not used) 801	104	
$\label{eq:Where: TN_e} = TKN_o / 2 \mbox{ (assumed when D.O. control is r} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH\% * SVP_{Tai} + 68^{\circ}F) \\ \mbox{Where: } T_{std} = 68^{\circ}F \\ \mbox{RH}\%_{std} = 36\% \\ \mbox{SVP}_{std} = 0.34 \mbox{ psi} \\ \mbox{T}_{air} - Maximum \mbox{Air Temperature, } ^{\circ}F \\ \mbox{RH}\% - Maximum \mbox{Relative Humidity, } \% \\ \hline \end{tabular}$	not used) 801 /)) / (14.7 - (RH% _{str}	104 90%	
$\label{eq:Where: TN_e} = TKN_e / 2 \mbox{ (assumed when D.O. control is r} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH\% * SVP_{Tai} + 60)) * ((P_H - (RH\% * SVP_{Tai} + 60)) * (P_H $	not used) 801 /) / (14.7 - (RH% _{str}	104	
$\label{eq:Where: TN_e} = TKN_e / 2 \mbox{ (assumed when D.O. control is r} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH% * SVP_{Tair} + 68)^{\circ} F_{rair} + 68)^{\circ} F_{rair} \\ \hline \mbox{Where: } T_{std} = 68^{\circ} F_{rair} \\ \mbox{RH}\%_{std} = 36\% \\ \mbox{SVP}_{std} = 36\% \\ \mbox{SVP}_{std} = 0.34 \mbox{ psi} \\ \hline \mbox{T}_{air} - Maximum Air Temperature, }^{\circ} F_{rair} \\ \mbox{RH}\% - Maximum Relative Humidity, } \\ \mbox{SVP}_{Tair} - Saturated Vapor Pressure of Air Pressure o$	not used) 801 ()) / (14.7 - (RH% _{str})) / (14.7 - RH% (هر تهای المالی) r @ T _{air} , psi Sower Inlet, psi ration Basin, cfm ration Basin, cfm	104 90% 1.058 13.79 466	
$\label{eq:started} \begin{array}{l} \mbox{Where: } TN_e = TKN_e / 2 \mbox{ (assumed when D.O. control is r} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH% * SVP_{Tair} + 68\% RH%_{std} = 36\% SVP_{std} = 0.34 psi \\ T_{air} - Maximum Air Temperature, ^{e}F \\ RH% - Maximum Relative Humidity, % \\ SVP_{Tair} - Saturated Vapor Pressure of Ai \\ P_A - Actual Atmospheric Pressure after E \\ \hline \\ Minimum Air Required for Mixing in First Stage Aer \\ \hline \\ Minimum Air Required for Operating Full Plant, cfm \\ \hline \\ \end{tabular}$	not used) 801 ,)) / (14.7 - (RH% _{sk})) / (14.7 - (RH% _{sk} r @ T _{ai} , psi 30wer Inlet, psi ation Basin, cfm ration Basin, cfm (miding rqmt for 24 hrs)	104 90% 1.058 13.79 466 460	((P _A / P _H)] Side Roll
$\label{eq:started} \begin{array}{l} \mbox{Where: } TN_e = TKN_e / 2 \mbox{ (assumed when D.O. control is r} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH% * SVP_{Tair} + 68\% RH%_{std} = 36\% SVP_{std} = 0.34 psi \\ T_{air} - Maximum Air Temperature, ^{e}F \\ RH% - Maximum Relative Humidity, % \\ SVP_{Tair} - Saturated Vapor Pressure of Ai \\ P_A - Actual Atmospheric Pressure after E \\ \hline \\ Minimum Air Required for Mixing in First Stage Aer \\ \hline \\ Minimum Air Required for Operating Full Plant, cfm \\ \hline \\ \end{tabular}$	r @ T _{ai} r, psi 200wer Inlet, psi ration Basin, cfm ration Basin, cfm 20	104 90% 1.058 13.79 466 460 1,488 168	((P _A / P _H)] Side Roll Side Roll Side Roll
$\label{eq:starsest} \begin{array}{l} \mbox{Where: } TN_e = TKN_e / 2 \mbox{ (assumed when D.O. control is r} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH% * SVP_{Tail} & Where: T_{std} = 68^\circ F \\ RH\%_{std} = 36\% \\ SVP_{std} = 0.34 psi \\ T_{air} - Maximum Air Temperature, ^\circ F \\ RH% - Maximum Relative Humidity, % \\ SVP_{Tair} - Saturated Vapor Pressure of Ai \\ P_A - Actual Atmospheric Pressure after E \\ \hline \\ Minimum Air Required for Mixing in First Stage Aer \\ Minimum Air Required for Operating Full Plant, cfm \\ \hline \\ Aeration Pressure, in. H \\ psi, std \end{tabular}$	Not used) 801 (14.7 - (RH% _{str})) / (14.7 - (RH% _{str})) (T @ T _{str} , psi 20wer Inlet, psi ration Basin, cfm ration Basin, cfm (mixing rqmt for 24 hrs) 20 20 20 20 20 20 20 20 20 20	* SVP _{std}))) * 104 90% 1.058 13.79 466 460 1,488 168 6.1 <u>Design</u> icfm	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> icfm
$\label{eq:starsestimate} \begin{split} & \text{Where: } TN_{e} = TKN_{o} / 2 \ (\text{assumed when D.O. control is r} \\ \hline \mathbf{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mathbf{Air Correction} \\ & \text{icfm} = \operatorname{scfm} / \left[((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH\% * SVP_{Tair} \\ Where: T_{std} = 68^{\circ}F \\ & RH\%_{std} = 36\% \\ & SVP_{std} = 0.34 psi \\ & T_{air} - Maximum Air Temperature, ^{\circ}F \\ & RH\% - Maximum Relative Humidity, \ \% \\ & SVP_{Tair} - Sturated Vapor Pressure of Ai \\ & P_{A} - Actual Atmospheric Pressure after E \\ & Minimum Air Required for Mixing in First Stage Aer \\ & Minimum Air Required for Operating Full Plant, cfm \\ & Aeration Pressure, in. H \end{split}$	tot used) 801 (المجابر)) / (الالمجابر) / (الالمجابر) (المجابر) / (المجابر) (mixing report for 24 hrs) المجابر) (سندام report for 24 hrs) المجابر) (de blower intet/outlet)	104 90% 1.058 13.79 466 460 1,488 168 6.1 <u>Design</u> icfm 971	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u>
$\label{eq:second} \begin{array}{l} \mbox{Where: } TN_e = TKN_e / 2 \mbox{(assumed when D.O. control is r} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm = scfm / [((T_{std} + 460) / (T_{ar} + 460)) * ((P_H - (RH% * SVP_{Tai} + 80\%) \\ Where: T_{std} = 68^\circ F \\ RH\%_{std} = 36\% \\ SVP_{std} = 0.34 psi \\ T_{ar} - Maximum Air Temperature, ^{\circ} F \\ RH% - Maximum Relative Humidity, % \\ SVP_{Tair} - Saturated Vapor Pressure of Ai \\ P_A - Actual Atmospheric Pressure after E \\ \hline Minimum Air Required for Mixing in First Stage Aer \\ Minimum Air Required for Operating Full Plant, cfm \\ Aeration Pressure, in. H \\ psi, std \mbox{(does not inclusive)} \\ \hline \mbox{Aeration Basin - Fine Bubble} \\ \hline \mbox{Aeration Basin - Coarse Bubble} \\ \hline \mbox{Aerobic Digester Tank} \mbox{(sequenced aeration)} \end{array}$	r @ T _{air} , psi 30wer Inlet, psi ration Basin, cfm ration Basin, cfm (mixing remt for 24 hrs) I ₂ O ude blower inlet/outlet) <u>scfm</u> 801 724 528	• * SVP _{std}))) * 104 90% 1.058 13.79 466 460 1,488 168 6.1 <u>Design</u> icfm 971 877 528	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> 166 460 528
$\label{eq:here:transform} \begin{split} & \text{Where: } TN_{e} = TKN_{e} / 2 \ (\text{assumed when D.O. control is r}\\ \hline \mathbf{Total Aeration Required in Aeration Basin, scfm}\\ \hline \mathbf{Air Correction}\\ & \text{icfm} = \text{scfm} / [((T_{std} + 460) / (T_{atr} + 460)) * ((P_{H} - (RH\% * SVP_{Tair}) \\ & Where: T_{std} = 68^\circF\\ & RH\%_{estd} = 36\%\\ & SVP_{std} = 0.34psi\\ & T_{atr} - Maximum \ Air Temperature, ^\circF\\ & RH\% \cdot Maximum \ Relative Humidity, \%\\ & SVP_{Tair} - Saturated \ Vapor Pressure of Air \\ & P_{A} - Actual \ Atmospheric Pressure after E\\ \hline & Minimum \ Air \ Required \ for \ Mixing in \ First Stage \ Aeration \ Pasin - Kardion \ Pressure, in. \ H\\ & psi, std \ (does not incluse)\\ \hline & Aeration \ Basin - Fine \ Bubble \\ \ Aeration \ Basin - Fine \ Bubble \\ \ Aerobic Digester Tank \ (sequenced aeration)\\ \hline & Selector Tank \end{aligned}$	Not used) 801 N) / (14.7 - (RH% _{str}) r @ T _{air} , psi 20wer Inlet, psi ration Basin, cfm ration Basin, cfm (mixing rqmt for 24 hrs) 120 ude blower inlet/outlet) 20 30 30 30 30 30 30 30 30 30 3	104 90% 1.058 13.79 466 460 1,488 168 6.1 <u>Design</u> icfm 971 877 528 90	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> icfm 466 460 528 90
$\label{eq:second} Where: TN_e = TKN_e / 2 (assumed when D.O. control is response to the second state of the second sta$	soft used) 801 N) / (14.7 - (RH% _{stc} r @ T _{air} , psi 30wer Inlet, psi ration Basin, cfm ration Basin, cfm ration Basin, cfm 1(mixing rqmt for 24 hrs) 1/20 de blower inlet/outlet) 526 801 724 528 90 120 120 2,263	* SVP _{stt}))) * 104 90% 1.058 13.79 466 460 1,488 168 6.1 Design icfm 971 877 528 90 120 2,585	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> 166 460 528
$\label{eq:sector} Where: TN_e = TKN_e / 2 \mbox{(assumed when D.O. control is r} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	soft used) 801 N) / (14.7 - (RH% _{stc} r @ T _{air} , psi 30wer Inlet, psi ration Basin, cfm ration Basin, cfm ration Basin, cfm 1(mixing rqmt for 24 hrs) 1/20 de blower inlet/outlet) 526 801 724 528 90 120 120 2,263	104 90% 1.058 13.79 466 460 1,488 168 6.1 <u>Design</u> icfm 971 877 528 90 120	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> icfm 466 460 528 90 120
Where: TN _e = TKN _e / 2 (assumed when D.O. control is rTotal Aeration Required in Aeration Basin, scfmAir Correctionicfm = scfm / [((T _{std} + 460)) / (T _{air} + 460)) * ((P _H - (RH% * SVP _{Tai})Where:T _{std} = 68°FRH% _{btd} = 36%SVP _{std} = 0.34 psiT _{air} - Maximum Air Temperature, °FRH% - Maximum Relative Humidity, %SVP _{Tair} - Saturated Vapor Pressure of AiP _A - Actual Atmospheric Pressure after EMinimum Air Required for Mixing in First Stage AerMinimum Air Required for Operating Full Plant, cfmAeration Pressure, in. Hpsi, std(does not induAeration Basin - Fine BubbleAeration Basin - Coarse BubbleAerobic Digester TankClarifier RAS Airlift Pumps & SkimmersTotal Air AvailableOWER REQUIREMENTS	Not used) 801 N) / (14.7 - (RH% _{str}) r @ T _{air} , psi 30ower Inlet, psi ration Basin, cfm ration Basin, cfm ration Basin, cfm ration Basin, cfm ration Basin, cfm Ration Basin, cfm 20 ade blower inlet/outlet) Scfm 801 724 528 90 120 2,263	* SVP _{stt}))) * 104 90% 1.058 13.79 466 460 1,488 168 6.1 <u>Design</u> icfm 971 877 528 90 120 2,585 3,113	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> icfm 466 460 528 90 120
$\label{eq:here:transform} \begin{split} & \text{Where: } \text{TN}_{e} = \text{TKN}_{e} / 2 \text{ (assumed when D.O. control is r}\\ \hline \textbf{Total Aeration Required in Aeration Basin, scfm}\\ \hline \textbf{Air Correction}\\ & \text{icfm} = \text{scfm} / [((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH% * SVP_{Tair} + 68\%) \\ & \text{Where: } T_{air} = 68\% \\ & \text{RH}\%_{estd} = 36\% \\ & \text{SVP}_{std} = 0.34 \text{ psi} \\ & T_{air} - \text{Maximum Air Temperature, } ^{\circ}\text{F} \\ & \text{RH}\% - \text{Maximum Relative Humidity, } \\ & \text{SVP}_{Tair} - \text{Saturated Vapor Pressure of Air} \\ & P_{A} - \text{Actual Atmospheric Pressure after E} \\ \hline \text{Minimum Air Required for Mixing in First Stage Aeration Pressure, in. H} \\ & \text{Minimum Air Required for Operating Full Plant, cfm} \\ & \text{Aeration Basin - Fine Bubble} \\ & \text{Aeration Basin - Fine Bubble} \\ & \text{Aerobic Digester Tank} \\ & \text{Clarifier RAS Airlift Pumps & Skimmers} \\ & \text{Total Air Required} \\ & \text{Total Air Required} \\ \end{array}$	soft sof	104 90% 1.058 13.79 466 460 1,488 168 6.1 <u>Design</u> icfm 971 877 528 90 120 2,585 3,113	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> icfm 466 460 528 90 120 1,664
$\label{eq:second} Where: TN_e = TKN_e / 2 \mbox{(assumed when D.O. control is r} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	801 801)) / (14.7 - (RH% _{str})) / (14.7 - (RH% _{str})) / (14.7 - (RH% _{str})) (14.7 - (RH% _{str}) (14.7 - (RH% _{str})) (14.7 - (RH% _{str}) (mixing rqmt for 24 hrs) (mixing	* SVP _{stt}))) * 104 90% 1.058 13.79 466 460 1,488 168 6.1 Design icfm 971 877 528 971 877 528 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 15.85 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> icfm 466 460 528 90 120 1,664
Where: TN, = TKN, / 2 (assumed when D.O. control is rTotal Aeration Required in Aeration Basin, scfmAir Correctionicfm = scfm / [((T _{std} + 460) / (T _{air} + 460)) * ((P _H - (RH% * SVP _{Tai})Where:T _{std} = 68°FRH% _{btd} = 36%SVP _{std} = 0.34 psiT _{air} - Maximum Air Temperature, °FRH% - Maximum Relative Humidity, %SVP _{Tair} - Saturated Vapor Pressure of AiP _A - Actual Atmospheric Pressure after EMinimum Air Required for Mixing in First Stage AerMinimum Air Required for Operating Full Plant, cfmAeration Basin - Fine BubbleAeration Basin - Coarse BubbleAeration Basin - Coarse BubbleAeration Basin - Coarse BubbleAerobic Digester TankClarifier RAS Airlift Pumps & SkimmersClarifier RAS Airlift Pumps & SkimmersOperating Power for Aeration Basin, HPOperating Power for Aeration Basin, HPOperating Power for Aeration Basin, HPOperating Power for Clarifier, HPOperating Power for Clarifier, HP	soft soft	* SVP _{stt}))) * 104 90% 1.058 13.79 466 460 1,488 168 6.1 <u>Design</u> icfm 971 528 90 120 2,585 3,113 <u>Power</u> 54.8 15.7 2.7 3.6	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> icfm 466 460 528 90 120 1,664
$\label{eq:second} Where: TN_e = TKN_e / 2 \ (assumed when D.O.\ control is relation A eration Required in Aeration Basin, scfm and the scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH% * SVP_{Tair} + 460)) * ((P_H - (RH% * SVP_{Tair} + 460)) * ((P_H - (RH% * SVP_{Tair} + 460)) * ((P_H - (RH% + 460)) * (P_H - (RH% + 460)) * ((P_H - (RH% + 460)) * (P_H - (RH% + 460)) * (RH + 460) * (RH $	soft s	* SVP _{stt}))) * 104 90% 1.058 13.79 466 460 1,488 168 6.1 Design icfm 971 877 528 971 877 528 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 105 13.79 15.85 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Min</u> icfm 466 460 528 90 120 1,664

Aero-Mod, Inc. AERATION DESIGN CALCULATIONS

Project: Maize, Kansas WWTF Expansion 0.600 mgd Engineer: MKEC Diffuser Type Used: Stainless Steel Coarse Bubble	Date: Units:	13-Dec-16 English
AERATION REQUIREMENTS - SECOND STAGE		Consumption
Oxygen Required for BOD [Q * BOD _{rem} * 8.34 * O_2 Req. / 24], lbs O_2 /hr	26.3	
Oxygen Required for TKN [Q * TKN _{rem} * 8.34 * O ₂ Req. / 24], lbs O ₂ /hr	20.1	35%
Actual Oxygenation Rate (AOR), lbs O ₂ /hr	46.4	-
Standard Oxygenation Rate (SOR), lbs O ₂ /hr	90.4	Ļ
SOR = [(AOR * $C_{s,20}$) / ($\alpha * \Theta^{A(T-20)}$ * (Tau * $\Omega * \beta * C_{s,20}$ - C_L) * F)]		
Where: $C_{s,T,H}$ Actual Value of D.O. Saturation, mg/l	9.08	
C _{s,20} Steady State Value of D.O. Saturation, mg/l	9.08	
lpha Alpha - Oxygen Transfer Correction Factor for Waste	0.75	
 Theta - Oxygen Transfer Coefficient 	1.024	
T Temperature of Water, °C	20	
Tau Oxygen Saturation Value $(C_{s,T,H}/C_{s,20})$	1.000	
β Beta - Salinity-Surface Tension Correction Factor	0.95	
P_H Atmospheric Pressure at Site Elevation, psi/FASL	13.99	-
Ω Omega (P _H /P _s)	0.952	
F Fouling Factor C _L Residual D.O. Concentration, mg/l	1.00 2.0	
Air Requirement = [SOR / (Oxygen Density * TE% * Diffuser Depth) / 60], scfm		
	844	
Where: Oxygen Density, Ibs O ₂ /cf	0.0175	
Transfer Efficiency per Foot of Submergence, % Diffuser Depth Below Water Surface, ft	0.85% 12.0	
	12.0	
Denitrification Credit = [Air Rqmt * (TKN _{oxy} / AOR) * 50% * ((TKN _o - TN _e) / TKN _o)], s	scfm	120
Where: $TN_e = TKN_o / 2$ (assumed when D.O. control is not used)		
Total Aeration Required in Aeration Basin, scfm 724		
Air Correction icfm = scfm / [((T _{std} + 460) / (T _{air} + 460)) * ((P _H - (RH% * SVP _{Tair})) / (14.7 - (RH%	_{std} * SVP _{std}))) *	((P _A / P _H)]
Where: T _{std} = 68°F		
$RH\%_{std} = 36\%$		
SVP _{std} = 0.34 psi		
T _{air} - Maximum Air Temperature, ⁰F	104	
RH% - Maximum Relative Humidity, %	90%	
SVP _{Tair} - Saturated Vapor Pressure of Air @ T_{air} , psi	1.058	
P_A - Actual Atmospheric Pressure of Air @ T _{air} , psi	13.79	
		0.1 5 1
Minimum Air Required for Mixing in Second Stage Aeration Basin, cfm	460	Side Roll
Aeration Pressure, in. H ₂ O	168	168
psi, std (does not include blower inlet/outlet)	6.1	6.1
	Design	<u>Peak</u>
scfm	icfm	icfm
Aeration Basin - Coarse Bubble 724		

Aero-Mod, Inc. CLARIFIER DESIGN CALCULATIONS

<i>Project:</i> Maize, Kansas WWTF Expansion 0.600 mgd <i>Engineer:</i> MKEC <i>Clarifier Type Used:</i> Split-ClarAtor			Date: Units:	13-Dec-16 English
	·			
FLOW CONDITIONS				
	Design Flow, MGD	0.600		
	Peaking Factor, hourly	4.50	2.700	MGD
	Duration, min	60		
	Peaking Factor, sustained	3.00	1.800	MGD
	Aeration Tank Volume, Mgal	0.693		
	MLSS, mg/l	3,680		
	Avg. RAS Recycle Rate, %	150%		

EQUIPMENT SIZING & SELECTION

Number of Clarifiers	2	Surface Area per Clarifier, sf	960
Clarifier Unit Model	24480	Total Surface Area, sf	1,920
Bridge Length, ft	24	Total Weir Length, ft	180
Clarifier Unit Width, ft	20	Tank Wall Depth, ft	14.5
Number of Units per Clarifier	2	Tank Water Depth, ft	12.5

SURFACE OVERFLOW RATE

.

	Design
Design Flow, gpd/sf	313
Peak Day Flow, gpd/sf	938
Peak Hour Flow, gpd/sf	1,000 * Max allowed to leave clarifier
Max. Flow Allowed Through Clarifier Orifice, gpd/sf	1,000 * Max allowed to leave clarifier

WEIR OVERFLOW RATE

Design Flow, gpd/lin. ft	3,333
Peak Flow, gpd/lin. ft	10,667

SOLIDS LOADING RATE

Design Flow, lbs/day/sf	24.0
Peak Flow, lbs/day/sf	45.1

RETENTION TIME - including RAS

Design Flow, hr	2.9
Peak Flow, hr	1.5

Aero-Mod, Inc. TANKAGE DESIGN CALCULATIONS

Project: Engineer: Tank Cons						Date: Units:	13-Dec-16 English
SELECTO	R TANK Anoxic Sela Number of ∃ Tank Wall H Tank Water Freeboard, 5	Fanks leight, ft Depth, ft	Volume Requ 2 14.5 12.5 2.0	uired, gal Tank Width, Tank Length Total Volume Retention Tir	, ft e, gallons	RAS), min.	9.0 40.0 67,320 65
AERATION	N TANK		Volume Sele	cted, gal	692,500		
Tank Wall I Tank Wate	-		14.5 12.5	Number of T Number of S		2 2	
	Number of Tank Length Tank Width, Area of Eac Total Volum	n, ft , ft h Tank, sf	2 64.0 29.125 1,864 348,568 Total volume	Number of Ta Tank Length, Tank Width, Area of Each Total Volume provided, gal	, ft ft i Tank, sf	2 105.250 17.5 1,842 344,431 692,999	
CLARIFIEF	R TANK			1 , 3			
Number of Tank Wall I Tank Watei	Height, ft		2 14.5 12.5	Tank Width, Tank Length, Total Volume	, ft		40.0 24.0 179,520
AEROBIC	DIGESTER T	ANK	Volume Selec	cted, gal	263,150		
Number of Tank Wall I Tank Water	Height, ft		2 14.5 13.0	Tank Width, 1 Tank Length, Total Volume	ft		47.875 28.5 265,356
OVERALL	OVERALL TANKAGE DIMENSIONS						
Total Lengtl Total Width Total Area, Total Wall L	, ft sf		137.5 99.5 13,681 1,158	Wall Thickne Floor Thickne Total Concre Total Concre Total Grout fo	ess, in te for Walls, te for Slab, c	y	15.0 18.0 777 787 121

Sequox[®] ClarAtor[®] SR Diffuser Access System

Maize, KS WWTF Proposal Existing - Rehab

for

MKEC

December 2016

Aero-Mod, Inc.

7927 U.S. Highway 24 Manhattan, KS 66502 USA *Ph:* (785) 537-4995 *Fax:* (785) 537-0813 Specializing in Custom Designed Wastewater Treatment Facilities

Aero-Mod, Inc. EQUIPMENT AND SERVICES COST ESTIMATE

Project: Maize, Kansas Existing WWTF - Rehab *Engineer:* MKEC

EQUIPMENT SUPPLIED

AERATION EQUIPMENT

- 2 SEQUOX aeration control butterfly valve, pneumatically-actuated
- 2 SEQUOX aeration throttling butterfly valve, gear-operated
- 18 Wall mounted aeration assembly, Model WA-PF4
- 12 Wall mounted aeration assembly, Model WA-PS2
- 75 Fine Bubble diffusers

CLARIFIER MODIFICATION EQUIPMENT

- 4 Cold Weather Bypass Kits
- 24 RAS Modificaton Kits
- 6 Inlet Screen Kits

DIGESTION, SLUDGE HOLDING & WAS EQUIPMENT

- 2 WAS airlift pump, Model AL-600
- 1 WAS submersible pump, 2.7 HP 230/460 V, 3 ph
- 1 Telescoping decanting valve, stainless steel 6"

ELECTRICAL & CONTROLS EQUIPMENT

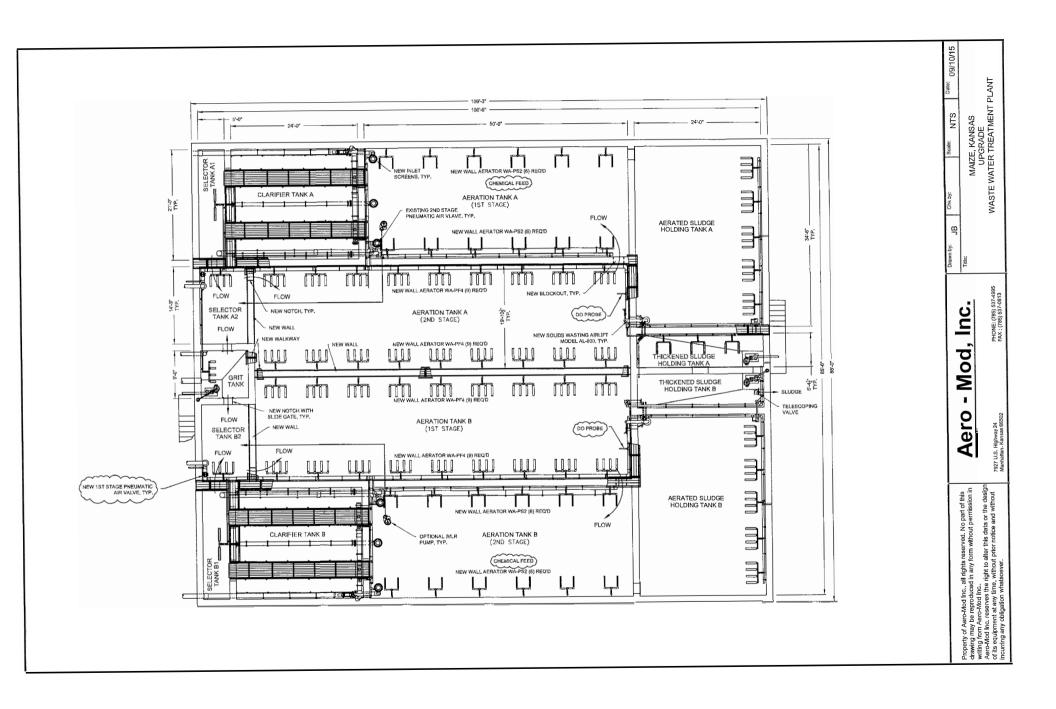
1 D.O. Controller and 4 probes

ANCILLARY EQUIPMENT

- 115 Wall mounted walkway and handrail
- 2 Guiderail mounted IMLR Pumps
- 1 Guiderail mounted Digester Transfet Pump
- LS Spare Parts
- LS Interior tank installation materials SS brackets, SS bolts, PVC wall inserts, pneumatic tubing, misc.

SERVICES

- LS Freight to jobsite
- LS Aero-Mod equipment dry inspection, two (2) days
- **LS** Aero-Mod equipment wet start-up, two (2) days
- LS Operator training school 2 days at Aero-Mod facilities in Manhattan, KS


		TOTAL BASE EQUIPMENT COST		\$207,000
OPTIONA 4	LAIR FLOW MANAGEM	ENT EQUIPMENT y valve, electrically-actuated		
4	Aeration flow conditione Aeration throttling butter	r & flow sensor	\$	36,000
24	RAS Suction hood kits	Converts to New fiberglass style hood	\$	11,000
		TOTAL OPTIONAL EQUIPMENT COST	==:	47,000

Date: Units:

13-Dec-16 English

- First Stage Aeration Basins

- Second Stage Aeration Basins
- First Stage Aeration Basins

Aero-Mod, Inc. ACTIVATED SLUDGE DESIGN CALCULATIONS

Project:	Maize, Kansas Existing WWTF - Rehab		Date:	13-Dec-16
Engineer:	MKEC		Units:	English
Act. Sludge	Process:	SEQUOX		

Population Equivalent

DESIGN CONDITIONS & PARAMETERS

Decion combinione ar		
		Clarifier
	Influent	Effluent
Flow (Q), MGD	0.400	
BOD ₅ , mg/l	300	10.0
BOD ₅ , lbs/day	1,001	33.4
BOD _L , mg / I	439	
TSS, mg/l	300	10.0
TSS, lbs/day	1,001	33.4
Ammonia-N, mg/l	43.6	1.0
Ammonia-N, lbs/day	145.4	3.3
TN, mg/l		8.0 **
TN, lbs/day		26.7
Phosphorus-P, mg/l	8.0	1.0 *
Phosphorus-P, lbs/day	26.7	3.3
Net Alkalinity Loss, mg/l as C	aCO₃	(243)
	* Assumes Chem	nical Addition

@0.2lbsBOD/cap	
Aeration Basin	
Retention Time, hours	27.7
Aeration Tank Volume, Mgal	0.462
MCRT, days	18.0
Wastewater Temperature, °C	10
Aerobic Digester	
Volume, % of Aeration Tank	32.0
Maximum MLSS, mg/l	12,000
Maximum MLSS, %	1.20%
Digester Temperature, ^o C Sludge Holding Tank	10
Volume, % of Aeration Tank	0.0
Maximum MLSS, mg/l	25,000
Maximum MLSS, %	2.50%

5004

** Assumes rDON less than 2 ppm **PROJECTED OPERATING CONDITIONS - AERATION BASIN**

Mixed Liquor Suspended Solids, mg/l Excess MLSS due to Phos-P Uptake/Removal, mg/l 164	3,680
Mixed Liquor Volatile Suspended Solids, %	70%
F/M Ratio, Ibs BOD ₅ /Ib MLVSS	0.10
F/M Ratio, lbs BOD₅/lb MLSS	0.07
Organic Loading, Ibs BOD ₅ /1000 cf of tank/day	16.2
Oxygen Requirements (Carbonaceous), mg/l/hr	9.35
Oxygen Requirements (Nitrogenous), mg/l/hr	7.07
Solids Production, lbs/day	787
WAS - Solids Wasted per Day, Ibs/day	754
WAS - Solids Wasted per Day, gal/day @ 0.37%	24,561

PROJECTED OPERATING CONDITIONS - AEROBIC DIGESTER

Volatile Solids Reduction in Digester, %	31%
Solids Wasted from Digester, lbs/day	591
Mass Solids Yield in Process & Digester per Mass Influent BOD_5 , %	62%
Volume Wasted from Digester, gallons/day	
Digester Sludge Age, days	25
Air Required for Stabilization, cfm	228
Air Required for Mixing @ 30 cfm/1000 cf	593

Aero-Mod, Inc.

Project: Maize, Kansas Existing WWTF - Rehab Engineer: MKEC Diffuser Type Used: Tubular EPDM Fine Bubble		Date: Units:	13-Dec-16 English
Q, MGD 0.400	TKN₀, mg/l		60.0
BOD _o , mg/l 300	TKN _e , mg/l		2.0
BOD _e , mg/l 10	TKN _{assimilation} , mg/l		14.5
BOD _{rem} , mg/I 300	TKN _{rem} , mg/l		60.0
O ₂ Requirement, lb O ₂ /lb BOD _{rem} 1.200	O ₂ Requirement, lb	O ₂ /lb TKN _{rem}	4.60
AERATION REQUIREMENTS - FIRST STAGE			Consumption
BOD _{oxy} - Oxygen Required for BOD [Q * BOD _{rem} * 8.3	34 * O ₂ Req. / 24], lbs O ₂ /	hr 32.5	
TKN _{oxy} - Oxygen Required for TKN [Q * TKN _{rem} * 8.34 Actual Oxygenation Rate (AOR), lbs O ₂ /hr	* O ₂ Req. / 24], lbs O ₂ /hr	24.9 57.4	-
Standard Oxygenation Rate (SOR), lbs O ₂ /h SOR = [(AOR * $C_{s,20}$) / (α * $\Theta^{A(T-20)}$ * (7		152.0 F)]	
Where: C _{s.T.H} Actual Value of D.O. Satura	ition, mg/l	9.08	
C _{s,20} Steady State Value of D.O.		9.08	
α Alpha - Oxygen Transfer Co		0.65	
 Theta - OxygenTransferCo 	pefficient	1.024	
T Temperature of Water, °C Tau Oxygen Saturation Value (C	Cet H/Ce 20)	20 1.000	
β Beta - Salinity-Surface Tens		0.95	
P _H Atmospheric Pressure at Sit	e Elevation, psi/FASL	13.99	1,350
Ω Omega (P _H /P _s)		0.952	
F Fouling Factor C _L Residual D.O. Concentratio	n ma/l	0.85 2.0	
Air Requirement = [SOR / (Oxygen Density * TE% * D		658	
Where: Oxygen Density, lbs O ₂ /cf		0.0175	
Transfer Efficiency per Foot of Sub Diffuser Depth Below Water Surfac		2.00%	
Denitrification Credit = [Air Rqmt * (TKN _{oxy} / AOR) * 50 Where: TN _e = TKN _o / 2 (assumed when D.C Total Aeration Required in Aeration Basin, scfm). control is not used))], scfm 34	124
Where: $TN_e = TKN_o / 2$ (assumed when D.C). control is not used) 5	34	
Where: TN _e = TKN _o / 2 (assumed when D.C Total Aeration Required in Aeration Basin, scfm Air Correction). control is not used) 5	34	
Where: TN _e = TKN _o / 2 (assumed when D.C Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [((T _{std} + 460) / (T _{air} + 460)) * ((P _H - (RH). control is not used) 5	34	
$\label{eq:Where: TN_e} = TKN_e / 2 \ (assumed \ when \ D.C.$ Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH Where: T_{std} = 68^\circ F). control is not used) 5	34	
$\label{eq:total_states} \begin{split} & \text{Where: } TN_{e} = TKN_{e} / 2 (\text{assumed when D.C} \\ \hline \textbf{Total Aeration Required in Aeration Basin, scfm} \\ & \textbf{Air Correction} \\ & \text{icfm} = scfm / \left[((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH \\ Where: T_{std} = 68^{\circ}F \\ & RH\%_{std} = 36\% \end{split}$). control is not used) 5 /% * SVP _{Tair})) / (14.7 - (Rł	34	
$\label{eq:total_states} \begin{split} & \text{Where: } TN_{e} = TKN_{e} / 2 (\text{assumed when D.C} \\ \hline \mathbf{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mathbf{Air Correction} \\ & \text{icfm} = scfm / \left[((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH \\ Where: T_{std} = 68^{\circ}F \\ & RH \\ & Where: T_{atd} = 68^{\circ}F \\ & RH \\ & SVP_{std} = 36\% \\ & SVP_{std} = 0.34 psi \\ & T_{air} - Maximum Air Temperat \\ & RH \\ & RH \\ & Maximum Relative H \end{split}$). control is not used) 5 % * SVP _{Tair})) / (14.7 - (Rł urre, °F umidity, %	34 % _{etd} * SVP _{etd}))) * 104 90%	
$\label{eq:total_states} \begin{split} & \text{Where: } TN_{e} = TKN_{o} / 2 (\text{assumed when D.C} \\ & \textbf{Total Aeration Required in Aeration Basin, scfm} \\ & \textbf{Air Correction} \\ & \text{icfm} = scfm / \left[((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH \\ Where: T_{std} = 68^{\circ}F \\ & RH \\ & Where: T_{std} = 68^{\circ}K \\ & SVP_{std} = 0.34 psi \\ & T_{air} - Maximum Air Temperat \end{split}$). control is not used) 5 % * SVP _{Tair})) / (14.7 - (Rł urre, °F umidity, % essure of Air @ T _{air} , psi	34 1% _{etd} * SVP _{etd}))) * 104	
$\label{eq:started} \begin{split} & \text{Where: } TN_{e} = TKN_{o} / 2 (\text{assumed when D.C} \\ \hline \mathbf{Total Aeration Required in Aeration Basin, scfm} \\ & \mathbf{Air Correction} \\ & \text{icfm} = \operatorname{scfm} / \left[((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH \\ Where: T_{std} = 68^{\circ}F \\ & RH \\ & Where: T_{atr} = 68^{\circ}K \\ & SVP_{std} = 0.34 psi \\ & T_{air} - Maximum Air Temperat \\ & RH \\ & RH \\ & SVP_{tair} - Saturated Vapor Pr \\ & P_{A} - Actual Atmospheric Pre \\ & Minimum Air Required for Mixing in Firs \end{split}$). control is not used) 5 (% * SVP _{Tali})) / (14.7 - (R urnidity, % essure of Air @ T _{ain} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c	34 1% _{etd} ★ SVP _{etd}))) ★ 104 90% 1.058 13.79 fm 354	((P _A / P _H)] Side Roll
$\label{eq:total_system} \begin{split} & \text{Where: } TN_{\bullet} = TKN_{\bullet} / 2 (\text{assumed when D.C} \\ \hline \textbf{Total Aeration Required in Aeration Basin, scfm} \\ \hline \textbf{Air Correction} \\ & \text{icfm} = \text{scfm} / \left[((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH + 460)) (RH + 460)) * N_{std} = 68^{\circ}F \\ & RH \otimes_{std} = 36 \% \\ & SVP_{std} = 0.34 psi \\ & T_{air} - Maximum Relative H \\ & SVP_{rair} - Saturated Vapor Pr \\ & P_{A} - Actual Atmospheric Pres \end{split}$). control is not used) 5 % * SVP _{Tair})) / (14.7 - (Rł umidity, % essure of Air @ T _{air} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c d Stage Aeration Basin, c	34 H% _{etd} ★ SVP _{etd}))) ★ 104 90% 1.058 13.79 fm 354 fm 263	" ((P _A / P _H)]
$eq:started_st$). control is not used) 5 % * SVP _{Tair})) / (14.7 - (Rł umidity, % essure of Air @ T _{air} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c d Stage Aeration Basin, c	34 1% _{etcl} * SVP _{etcl}))) * 104 90% 1.058 13.79 fm 354 fm 263 ms) 900 168	((P _A / P _H)] Side Roll
$eq:started_st$	5. control is not used) 5. control is not used) 5. control is not used) 5. control is not used 5. control is not used 5. control is not used 6. control is not u	34 1% _{etd} * SVP _{etd})))) * 104 90% 1.058 13.79 fm 354 fm 263 ms) 900 168 let) 6.1 <u>Design</u>	r ((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u>
$\label{eq:starsest} \begin{array}{l} \mbox{Where: } TN_{e} = TKN_{e} / 2 \mbox{ (assumed when D.C.} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH_{H}) + (RH_$	5. control is not used) 5. control is not used) 5. control is not used) 6. * SVP _{Talr})) / (14.7 - (RH ture, °F umidity, % essure of Air @ T _{air} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c 1 Stage Aeration Basin, c 1 Stage Aeration Basin, c 1 Plant, cfm (mixing remt for 24) ssure, in. H ₂ O (does not include blower inlet/out <u>scfm</u>	34 1% _{etd} * SVP _{etd}))) * 104 90% 1.058 13.79 fm 354 fm 263 900 168 let) 6.1 <u>Design</u> icfm	((P _A / P _H)] Side Roll Side Roll 168 6.1
$\label{eq:constraint} \begin{split} & \text{Where: } TN_{w} = TKN_{v} / 2 (\text{assumed when D.C} \\ \hline \textbf{Total Aeration Required in Aeration Basin, scfm} \\ \hline \textbf{Air Correction} \\ & \text{icfm} = \operatorname{scfm} / \left[((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH_{H}) \mathbb{R}_{std} = 68^\circF \\ & RH \mathbb{N}_{std} = 36\% \\ & SVP_{std} = 0.34 psi \\ & T_{air} - Maximum Air Temperat \\ & RH \mathcal{N} - Maximum Relative H \\ & SVP_{Tair} - Saturated Vapor Pr \\ & P_{A} - Actual Atmospheric Pre \\ & Minimum Air Required for Mixing in First \\ & \mathsf{Minimum Air Required for Mixing in Second \\ & \mathsf{Minimum Air Required for Operating Ful \\ & Aeration Pre \\ \hline \end{array}$	0. control is not used) 5. control is not used) 5. control is not used) 5. control is not used) 6. control is not used 6. control is not used) 6. control is not used 6. con	34 1% _{etd} * SVP _{etd})))) * 104 90% 1.058 13.79 fm 354 fm 263 ms) 900 168 let) 6.1 <u>Design</u>	r ((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u>
$\label{eq:starset} \begin{array}{l} \mbox{Where: } TN_{s} = TKN_{s} / 2 (\mbox{assumed when D.C} \\ \hline \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular}$	0. control is not used) 5. control is not used) 5. control is not used) 6. control is not used) 6. control is not used) 6. control is not used 6. control is not used 6. control is not used 6. control is not used) 6. control is not used 6. control is not used) 6. control is not used)	34 1% _{etd} * SVP _{etd})))) * 104 90% 1.058 13.79 fm 354 fm 263 nrs) 900 168 6.1 <u>Design</u> icfm 34 647 83 585 96 296	r ((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u>
$\label{eq:second} \begin{array}{l} \mbox{Where: } TN_{w} = TKN_{w} / 2 (\mbox{assumed when D.C} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_{H} - (RH + M)) * ((P_{H} - RH) * M) \\ \\ \mbox{Where: } T_{std} = 68^\circF \\ & RH \forall_{wetd} = 36\% \\ & SVP_{std} = 0.34 psi \\ & T_{air} - Maximum Air Temperat \\ & RH \% - Maximum Reduired for Mixing in Firs \\ & Minimum Air Required for Mixing in Firs \\ & Minimum Air Required for Mixing in Second \\ & Marition Basin - Fine Bubble \\ & Aeration Basin - Coarse Bubble \\ & Aeration Basin - Coarse Bubble \\ & Aerobic Digester Tank \qquad (sequenced in Selector Tank K Selector Tank Selector Tank Selector Tank Selector Se$	5. control is not used) 5. control is not used) 5. control is not used) 6. * SVP _{Talr})) / (14.7 - (RH ture, °F umidity, % essure of Air @ T _{ain} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c 1 Stage Aeration Basin, c 1 Stage Aeration Basin, c 1 Plant, cfm (mixing remt for 24) ssure, in. H ₂ O (does not include blower inlet/out <u>ssure</u> , in. H ₂ O (does not include blower inlet/out <u>ssure</u> , in. H ₂ O (does not include blower inlet/out 5. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	34 1% _{etd} * SVP _{etd}))) * 104 90% 1.058 13.79 168 13.79 168 168 168 161 <u>Design</u> 168 161 <u>Design</u> 168 162 26 26 26	r ((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u>
$\label{eq:starting} \begin{array}{l} \mbox{Where: } TN_s = TKN_s / 2 \mbox{ (assumed when D.C.} \\ \hline \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} tab$	2. control is not used) 5. control is not used) 5. control is not used) 6. * SVP _{Tair})) / (14.7 - (RH ture, °F turnidity, % essure of Air @ T _{air} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c 1 Stage Aeration Ba	34 1% _{etd} * SVP _{etd}))) * 104 90% 1.058 13.79 fm 354 fm 263 nrs) 900 168 6.1 <u>Design</u> icfm 34 647 83 585 96 296 26 266 26 060 99 1,614	r ((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u>
$\label{eq:second} Where: TN_s = TKN_s / 2 \mbox{(assumed when D.C)} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH) \\ Where: T_{std} = 68^{\circ}F \\ RH \%_{std} = 36\% \\ SVP_{std} = 0.34 \mbox{ psi} \\ T_{air} - Maximum Air Temperat \\ RH \% - Maximum Air Temperat \\ RH \% - Maximum Relative H \\ SVP_{Tair} - Saturated Vapor Pr \\ P_A - Actual Atmospheric Pre \\ Minimum Air Required for Mixing in Second \\ Minimum Air Required for Operating Ful \\ Aeration Pre \\ psi, std \\ \hline \mbox{Aeration Basin - Fine Bubble} \\ Aerobic Digester Tank \\ Clarifier RAS Airlift Pumps & Skimmers \\ Total A \\ Total A \\ \hline \end{tabular}$	2. control is not used) 5. control is not used) 5. control is not used) 6. * SVP _{Tair})) / (14.7 - (R+ 1. unidity, % essure of Air @ T _{ain} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c 1 Plant, cfm (ming reprint for 24) 5. control to the blower inlet/out (does not include blower inlet/out (does not include blower inlet/out 5. control to the blower inlet/out 5. control to the blower inlet/out 5. control to the blower inlet/out 6. control to the blower inlet/out 5. control to the blower inlet/out 6. control to the blower inlet/out 5. control to the blower inlet/out 5	34 1% _{atd} * SVP _{atd}))) * 104 90% 1.058 13.79 fm 354 fm 263 nrs) 900 168 let) 6.1 <u>Desian</u> icfm 34 647 83 585 96 296 26 296 27 297 28 297 28 297 28 297 28 297 28 297 28 297 28 297 28 297 28 297 29 297 20 207 20 207	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u> icfm
Where: TN, = TKN, / 2 (assumed when D.C.Total Aeration Required in Aeration Basin, scfmAir Correctionicfm = scfm / [((T _{std} + 460) / (T _{air} + 460)) * ((P _H - (RHWhere: T _{std} = 68°FRH% _{std} = 36%SVP _{std} = 0.34 psiT _{air} - Maximum Relative HSVP _{tat} - Saturated Vapor PrP _A - Actual Atmospheric PreMinimum Air Required for Mixing in Second Minimum Air Required for Operating FulAeration PreMinimum Air Required for Operating FulAeration Prepsi, stdAeration Basin - Fine Bubble Aeration Basin - Coarse Bubble Aeration Easin - Coarse Bubble Aeration Easin - Coarse Bubble Aeration Fine RAS Airlift Pumps & Skimmers Total A Total A Total ATotal A Total A Total A	0. control is not used) 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	34 1% _{etd} * SVP _{etd}))) * 104 90% 1.058 13.79 fm 354 fm 263 nrs) 900 168 168 168 16.1 <u>Design</u> 34 647 83 585 96 296 26 26 26 26 26 26 26 26 26 26 29 1,614 1,910 Power	r ((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u>
$\label{eq:second} Where: TN_s = TKN_s / 2 \mbox{(assumed when D.C)} \\ \hline \mbox{Total Aeration Required in Aeration Basin, scfm} \\ \hline \mbox{Air Correction} \\ \mbox{icfm} = scfm / [((T_{std} + 460) / (T_{air} + 460)) * ((P_H - (RH) \\ Where: T_{std} = 68^{\circ}F \\ RH \%_{std} = 36\% \\ SVP_{std} = 0.34 \mbox{ psi} \\ T_{air} - Maximum Air Temperat \\ RH \% - Maximum Air Temperat \\ RH \% - Maximum Relative H \\ SVP_{Tair} - Saturated Vapor Pr \\ P_A - Actual Atmospheric Pre \\ Minimum Air Required for Mixing in Second \\ Minimum Air Required for Operating Ful \\ Aeration Pre \\ psi, std \\ \hline \mbox{Aeration Basin - Fine Bubble} \\ Aerobic Digester Tank \\ Clarifier RAS Airlift Pumps & Skimmers \\ Total A \\ Total A \\ \hline \end{tabular}$	2. control is not used) 5. control is not used) 5. control is not used) 6. * SVP _{Tair})) / (14.7 - (R+ 1. unidity, % essure of Air @ T _{ain} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c 1 Plant, cfm (ming reprint for 24) 5. control to the blower inlet/out (does not include blower inlet/out (does not include blower inlet/out 5. control to the blower inlet/out 5. control to the blower inlet/out 5. control to the blower inlet/out 6. control to the blower inlet/out 5. control to the blower inlet/out 6. control to the blower inlet/out 5. control to the blower inlet/out 5	34 1% _{atd} * SVP _{atd}))) * 104 90% 1.058 13.79 fm 354 fm 263 nrs) 900 168 let) 6.1 <u>Desian</u> icfm 34 647 83 585 96 296 26 296 27 297 28 297 28 297 28 297 28 297 28 297 28 297 28 297 28 297 28 297 29 297 20 207 20 207	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u> icfm
Where: $TN_s = TKN_s / 2$ (assumed when D.C. Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [((T _{std} + 460) / (T _{air} + 460)) * ((P _H - (RH Where: $T_{std} = 68^{\circ}F$ RH% _{std} = 0.34 psi T_{str} - Maximum Air Temperat RH% - Maximum Relative H SVP _{std} = 0.34 psi T_{str} - Actual Atmospheric Pre Actual Atmosphere Pre Actual Atmosphere Pre Minimum Air Required for Mixing in Second Minimum Air Required for Operating Ful Aeration Basin - Fine Bubble Aeration Basin - Coarse Bubble Aeration Basin - Coarse Bubble Aeration Basin - Coarse Bubble Aeration Basin - Science for Mixing Total A Clarifier RAS Airlift Pumps & Skimmers Total A OWER REQUIREMENTS Operating Power for Aeration Basin, HP Operating Power for Selector Tank, HP	0. control is not used) 5. control is not used) 5. control is not used) 6. * SVP _{Tair})) / (14.7 - (RH ture, °F umidity, % essure of Air @ T _{air} , psi ssure after Blower Inlet, psi t Stage Aeration Basin, c 1 Plant, cfm (mking rqmt for 24 if 1 Stage Aeration Basin, c 1 Plant, cfm (mking rqmt for 24 if ssure, in. H ₂ O (does not include blower inlet/out aeration) 21 5. 4. 4. aeration) 22 4. 5. 4. 5. 4. 5. 4. 4. 5. 5. 4. 4. 5. 5. 4. 4. 5. 5. 4. 4. 8. 5. 4. 4. 8. 5. 4. 4. 8. 5. 5. 4. 8. 5. 5. 4. 8. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	34 1% _{etd} * SVP _{etd}))) * 104 90% 1.058 13.79 fm 354 fm 263 900 fm 263 nrs) 900 168 let) 6.1 <u>Desian</u> 168 167 83 585 96 296 26 296 26 296 26 296 26 60 99 1.614 1.910 <u>Power</u> 103.8 25.0 2.2	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u> icfm
Where: $TN_s = TKN_s / 2$ (assumed when D.C. Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [((T _{std} + 460) / (T _{air} + 460)) * ((P _H - (RH Where: $T_{std} = 68^\circ$ F RH% _{std} = 36% SVP _{std} = 0.34 psi T _{air} - Maximum Relative H SVP _{std} = 0.34 psi T _{air} - Maximum Relative H SVP _{std} = - Saturated Vapor Pr P _A - Actual Atmospheric Pre Minimum Air Required for Mixing in Second Minimum Air Required for Operating Ful Aeration Basin - Fine Bubble Aeration Basin - Coarse Bubble Aerobic Digester Tank (sequenced at Selector Tank Clarifier RAS Airlift Pumps & Skimmers Total A OWER REQUIREMENTS Operating Power for Aeration Basin, HP Operating Power for Clarifier, HP Operating Power for Clarifier, HP	b. control is not used) 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	34 1% _{etd} * SVP _{etd}))) * 104 90% 1.058 13.79 fm 354 fm 263 nrs) 900 168 6.1 <u>Design</u> 168 168 6.1 <u>Design</u> 34 647 83 585 96 296 26 266 29 1,614 1,910 <u>Power</u> 103.8 25.0 2.2 5.1	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u> icfm
Where: $TN_e = TKN_e / 2$ (assumed when D.C. Total Aeration Required in Aeration Basin, scfm Air Correction icfm = scfm / [((T _{att} + 460) / (T _{atr} + 460)) * ((P _H - (RH Where: $T_{std} = 68^{\circ}F$ RH% _{estd} = 36% SVP _{std} = 0.34 psi T _{atr} - Maximum Air Temperat RH% - Maximum Relative H SVP _{tat} - Saturated Vapor Pr P _A - Actual Atmospheric Pre Minimum Air Required for Mixing in Firs Minimum Air Required for Operating Ful Aeration Basin - Fine Bubble Aeration Basin - Coarse Bubble Aeration Basin - Coarse Bubble Aeration Basin - Sciese Bubble Aeration Basin - Coarse Bubble Aeration Basin - Coarse Bubble Aeration Basin - Operating Ful Operating Power for Aeration Basin, HP Operating Power for Aeration Basin, HP Operating Power for Selector Tank, HP	2). control is not used) 5 6 * SVP _{Tair})) / (14.7 - (R+ 19 * SVP _{Tair})) / (14.7 - (R+ 10	34 1% _{etd} * SVP _{etd})))) * 104 90% 1.058 13.79 fm 354 fm 263 nm) 900 168 6.1 <u>Design</u> icfm 34 647 83 585 96 296 26 26 26 26 26 26 29 1,614 1,910 <u>Power</u> 103.8 25.0 2.2 5.1 0.0	((P _A / P _H)] Side Roll Side Roll 168 6.1 <u>Peak</u> icfm

Aero-Mod, Inc. AERATION DESIGN CALCULATIONS

Engineer: MKEC	ting WWTF - Rehab ss Steel Coarse Bubble		Date: Units:	13-Dec-16 English
AERATION REQUIREMENTS -	SECOND STAGE			
) /br	47 5	Consumption
	Q * BOD _{rem} * 8.34 * O ₂ Req. / 24], lbs C * TKN _{rem} * 8.34 * O ₂ Req. / 24], lbs O ₂ :		17.5 13.4	35% 35%
	Rate (AOR), Ibs O_2 /hr		30.9	. 33%
Actual exygenation			50.5	
	on Rate (SOR), lbs O ₂ /hr		60.3	
SOR = [(AOR	* C _{s,20}) / (α * $\Theta^{\Lambda(T-20)}$ * (Tau * Ω * β * (C _{s,20} - C _L) * F)]		
Where: C _{STH} A	Actual Value of D.O. Saturation, mg/l		9.08	
	Steady State Value of D.O. Saturation, mg	/I	9.08	
	Alpha - Oxygen Transfer Correction Factor		0.75	
	heta - Oxygen Transfer Coefficient		1.024	
тт	Femperature of Water, °C		20	
	Dxygen Saturation Value ($C_{s,T,H}/C_{s,20}$)		1.000	
	Beta - Salinity-Surface Tension Correction	Factor	0.95	
P _H A	Atmospheric Pressure at Site Elevation, ps	si/FASL	13.99	1,350
	Dmega (P _H /P _s)		0.952	,
FF	ouling Factor		1.00	
	Residual D.O. Concentration, mg/l		2.0	
Air Requirement = [SOR / (Ox	<pre>sygen Density * TE% * Diffuser Depth)</pre>	/ 60], scfm	563	
Where: Oxygen	Density, lbs O₂/cf		0.0175	
Transfer	Efficiency per Foot of Submergence, %		0.85%	
Diffuser	Depth Below Water Surface, ft		12.0	
Denitrification Credit = [Air Rq	ımt * (TKN _{oxy} / AOR) * 50% * ((TKN _o - ⁻	TN _e) / TKN _o)], so	zfm	80
Where: TN _e = TK	KN_{o} / 2 (assumed when D.O. control is not	used)		
Total Aeration Required in A	Aeration Basin, scfm	483		
Air Correction		·····	<u></u>	
	' (T _{air} + 460)) * ((P _H - (RH% * SVP _{Tair})) /	/ (14.7 - (RH% _{sto}	* SVP _{std}))) *	((P _A / P _H)]
Where: T	_{std} = 68°F			
	H% _{std} = 36%			
	VP _{std} = 0.34 psi			
	_{air} - Maximum Air Temperature, °F		104	
	H% - Maximum Relative Humidity, %	~ - ·	90%	
	VP _{Tair} - Saturated Vapor Pressure of Air @		1.058	
P	A - Actual Atmospheric Pressure after Blov	wer Inlet, psi	13.79	
Minimum Air Req	uired for Mixing in Second Stage Aerat	tion Basin, cfm	263	Side Roll
	Aeration Prossure in 40		169	169
	Aeration Pressure, in. H ₂ O		168 6 1	168
	psi, std (does not include	blower inlet/outlet)	6.1	6.1
			<u>Design</u>	<u>Peak</u>
		scfm	icfm	icfm
Aeration Basin - Coa	rse Bubble	483	585	

Aero-Mod, Inc. CLARIFIER DESIGN CALCULATIONS

Project: Maize, Kar Engineer: MKEC Clarifier Type Used:	nsas Existing WWTF - Rehab Split-ClarAtor		Date: Units:	13-Dec-16 English
FLOW CONDITIONS				
	Design Flow, MGD Peaking Factor, hourly Duration, min Peaking Factor, sustained Aeration Tank Volume, Mgal MLSS, mg/l Avg. RAS Recycle Rate, %	0.400 3.00 60 2.00 0.462 3,680 150%	1.200 0.800) MGD) MGD

EQUIPMENT SIZING & SELECTION

Number of Clarifiers	2	Surface Area per Clarifier, sf	504
Clarifier Unit Model	24504	Total Surface Area, sf	1,008
Bridge Length, ft	24	Total Weir Length, ft	90
Clarifier Unit Width, ft	21	Tank Wall Depth, ft	14.0
Number of Units per Clarifier	1	Tank Water Depth, ft	12.5

SURFACE OVERFLOW RATE

	Design
Design Flow, gpd/sf	397
Peak Day Flow, gpd/sf	794
Peak Hour Flow, gpd/sf	1,000 * Max allowed to leave clarifier
Max. Flow Allowed Through Clarifier Orifice, gpd/sf	1,000 * Max allowed to leave clarifier

WEIR OVERFLOW RATE

Design Flow, gpd/lin. ft	4,444
Peak Flow, gpd/lin. ft	11,200

SOLIDS LOADING RATE

Design Flow, lbs/day/sf	30.4
Peak Flow, lbs/day/sf	49.0

RETENTION TIME - including RAS

Design Flow, hr	2.3
Peak Flow, hr	1.4

Aero-Mod, Inc. TANKAGE DESIGN CALCULATIONS

Project: Engineer: Tank Con		g WWTF - Reh ace Concrete	ab	Date: Units:	13-Dec-16 English
SELECTO	R TANK				
	<u>Selector</u>				
	Number of Tanks	2	Tank Width, ft		9.0
	Tank Wall Height, ft	14.0	Tank Length, ft		14.8
	Tank Water Depth, ft	12.0	Total Volume, gallons		23,831
	Freeboard, ft	2.0			
	Selector	-			
	Number of Tanks	2	Tank Width, ft		5.0
	Tank Wall Height, ft	14.0 12.5	Tank Length, ft		21.0
	Tank Water Depth, ft Freeboard, ft	12.5 2.0	Total Volume, gallons		19,635
	rieeboard, it	2.0			
AERATIO	N TANK	Volume Sele	cted, gal 461,667		
Tank Wall	Height, ft	14.0	Number of Trains	2	
Tank Wate	-	12.5	Number of Stages	2	
	1 ,		5		
	Stage 1		Stage 2		
	Number of Tanks	2	Number of Tanks	2	
	Tank Length, ft	71.3	Tank Length, ft	50.000	
	Tank Width, ft	19.875	Tank Width, ft	21.0	
	Area of Each Tank, sf	1,416	Area of Each Tank, sf	1,050	
	Total Volume, gallons	264,810	Total Volume, gallons	196,350	
		Total volume	provided, gal	461,160	
CLARIFIEI	R TANK				
Number of	Tanks	2	Tank Width, ft		21.0
Tank Wall		14.0	Tank Length, ft		24.0
Tank Wate	÷	12.5	Total Volume, gallons		94,248
AEROBIC	DIGESTER TANK	Volume Sele	cted, gal 147,733		
			, g · · · · , · · ·		
Number of	Tanks	2	Tank Width, ft		34.250
Tank Wall	Height, ft	14.0	Tank Length, ft		24.0
Tank Wate	r Depth, ft	13.0	Total Volume, gallons		159,863
OVERALL	TANKAGE DIMENSION	IS			
Totallanat	h ft	100.2	Mall Thiskness		45.0
Total Lengt Total Width		109.3 88.0	Wall Thickness, in Floor Thickness, in		15.0 15.0
Total Area,		9,614	Total Concrete for Walls,	CV	65
Total Wall I			Total Concrete for Slab, o	•	0
	New	. 101	Total Grout for Clarifier, of	•	0
			tetal creation claimer, c	-]	5

December 2016

Monthly Council Report

Department Highlights

- Overall Department activities are functioning normal.
- Sean McCormick has been hired to fill our remaining full-time patrol officer position.
- One of our patrol units was damaged during a call involving a stolen car. The suspect attempted to escape by ramming our patrol unit causing significant damage to both vehicles. Our vehicle is currently at Auto Craft and is being assessed by our insurance carrier.
- Detective Piper has been working several very involved cases this month. One is a sex crimes case that was presented to the district attorney and the other is a financial fraud case involving numerous jurisdictions, victims and suspects. Detective Piper and other officers have devoted copious amounts of time to the investigation of the cases and uncovered many open crimes that would have otherwise remained unsolved. We are fortunate to have Detective Piper as a part of our team.

Budget status: N/A Major purchases: None										
Current Staff Levels.	Monthly Activities									
I I Full-time	October Police Reports - 958 October calls for service - 481									
2 Part-time	Community Policing:									
2 Reserve	Working on holiday food drives and assisting needy									
2 Reserve -Vacant	families.									
City of Maize, Kansas	Your Prolice Ante-Community" 50 of 61									

PUBLIC WORKS REPORT 12-13--2016

Regular Work

- Graded 61st and north Tyler Road. Pick up and burn brush.
- Pick up and help Sue distribute commodities.
- We do locates, check the water and lift stations every day. Matt has had some new water line maps made for KDHE and for us so that we can locate and sample water over a more diverse range of the city. KDHE wants this so that our water samples are a better example of the whole city.

Special Projects

• We have several meetings scheduled for this week and beyond for the WWTP expansion. Hope to get that project underway soon.

This was a huge year for many accomplishments in the city of Maize. Here are just a few:

- * New Maintenance Shop
- * New material storage bins
- * New Splash Park
- * New Restrooms being constructed at the Park
- * Paving of 61st north Tyler to Ridge
- * Paving of Tyler Road 53rd to 61st.
- * New Street light at 61st and Tyler Road
- * Paving of 37th from maize Road to 119th.
- * Refurbishing of the Community Building
- * Total renovation of the front of the Cemetery
- * Sidewalk on Irma from James west to the end
- * Slurry Seal Gertz Addition and Albert St

Ron Smothers

Public Works Director

City Engineer's Report

12/19/2016

Maize Middle School

The exterior work on the "Cafetorium" is continuing at a rapid pace and looks great.

Baxter Dental

Occupancy expected next week.

<u>Heartland Credit Union</u> Building is almost completely enclosed. City has installed water meter.

Weniniger Storage Units

Currently installing security fencing.

Aero-Tech

Siding is done and roof is expected to be completed this week; completely enclosing the building.

Watercress Villas

In the process of installing rough-in plumbing. Strom water piping to our City Pond has been completed. Several of the slabs are poured. Parking and driveways will be installed before the framing.

Restrooms

Heating and Air is done. Conduit is installed for the security system. Siding on south side is complete. Soffits and siding on north side has started.

PLANNING ADMINISTRATOR'S REPORT

DATE:	December 19, 2016
то:	Maize City Council Members
FROM:	Kim Edgington, Planning Administrator
RE:	Regular December Council Meeting

The following is a summary intended to keep the Council apprised of the status of ongoing planning projects.

- 1. Watercress Apartment development Infrastructure construction continues with an anticipated opening date of late spring/early summer 2017.
- Comprehensive Plan Update Gould Evans attended the December 1st Planning Commission meeting for a stakeholders meeting with the Commissioners. Gould Evans presented their findings to-date and brainstormed with the Commission about the next phase of public involvement in the Comprehensive Planning process. The consultants are now preparing a web-based community survey and will have a draft for staff to review in late December.
- 3. General planning issues I continue to meet, both on the phone and in person, with citizens and developer's representatives requesting information on general planning matters, such as what neighboring property owners are planning to do, what they are allowed to do on their property, and what the process is for submitting various applications and materials to the Planning Commission.

City Clerk Report REGULAR COUNCIL MEETING December 19, 2016

Year to date status (Through 11/30/16):

Genera	al Fund –		
	Budget	YTD	
Rev.	\$3,313,469	\$3,287,425	99.21%
Exp.	\$3,534,297	\$3,350,528	94.80%
Streets	s –		
Rev.	\$303,518	\$ 300,845	99.12%
Exp.	\$302,000	\$ 282,380	93.50%
Waste	water Fund-		
Rev.	\$847,000	\$ 843,000	99.53%
Exp.	\$763,200	\$ 721,001	94.47%
Water	Fund-		
Rev.	\$870,488	\$ 857,502	98.51%
_		• _ · - ·	
Exp.	\$837,540	\$ 719,605	85.92%

Health & Dental Benefits

Per Council's request, here are the 2016 numbers (through 11/30/2016) for employee health, dental, and life (including accidental death and short-term disability).

	City Portion	Em	ployee Portion	<u>Total Paid</u>
Health:	\$295,970.95	\$	73,952.00	\$369,922.95
Dental:	19,337.09		4,833.34	24,170.43
Life:	8,668.08		0	8,668.08
	\$323,976.12	\$	78,785.34	\$402,761.46

CAPITAL PROJECTS

Projects w/o

Temp Notes	r	1	1				r		-				1		
Project	Fund	Resolution of Advisability		Resolution		Expenditures thru 12/31/15		Expenditures 1/1/16 thru 11/30/16 E		1/1/16 thru		Total xpenditures	Resolution Authorization Less Expenditures		
Eagles Nest													1		
Phase 2A															
Water	05	556-14	\$	104,000.00	\$	100,801.81	\$	2,505.38	\$	103,307.19	\$	692.81	Included in 2016A GO Bonds		
Eagles Nest															
Phase 2A															
Paving	05	555-14	\$	515,000.00	\$	440,221.49	\$	5,839.20	\$	446,060.69	\$	68,939.31	Included in 2016A GO Bonds		
Eagles Nest															
Phase 2															
Sanitary															
Sewer	05	547-14	\$	240,000.00	\$	168,429.73	\$	3,616.65	\$	172,046.38	\$	67,953.62	Included in 2016A GO Bonds		
Maize Ind															
Park Water	05	565-14	\$	63,700.00	\$	61,484.69	\$	2,100.60	\$	63,585.29	\$	114.71	Included in 2016A GO Bonds		
Maize Ind Park Sanitary															
Sewer	05	566-14	\$	97,600.00	\$	66,099.75	\$	2,476.05	\$	68,575.80	\$	29,024.20	Included in 2016A GO Bonds		
Eagles Nest															
Phase 2B															
Water	05	585-16	\$	123,000.00	\$	-	\$	7,946.59	\$	7,946.59	\$	115,053.41			
Eagles Nest															
Phase 2B															
Paving	05	586-16	\$	422,000.00	\$	-	\$	24,757.63	\$	24,757.63	\$	397,242.37			
Totals			\$	1,565,300.00	\$	837,037.47	\$	49,242.10	\$	886,279.57	\$	679,020.43	-		
	r –	r	r –		1		E	xpenditures	I			Resolution	1		
МРВС			Total R	esolution	E	xpenditures		1/1/16 thru		Total	Au	thorization Less			
Project	Fund	Resolution	Amoun	t		nru 12/31/15		11/30/16	E	xpenditures		Expenditures			
Public Works													4		
Building	05	MPBC 14-15	\$	1,056,893.00	\$	404,930.41	\$	647,292.59	\$	1,052,223.00	\$	4,670.00			
Grand Total						\$1,241,967.88		\$696,534.69	\$	1,938,502.57		\$683,690.43			

CIP 2016 (As of 11/30/2016)

			November	November		Year t	o Date
	<u>Detail</u>	<u>Reason</u>	Revenue	<u>Expense</u>	Budget	-	l Cash
Beg Cash - 01/	01/16					\$	352,451.28
	Ad Valorem	Тах			-		-
	Motor Vehicle	Tax			-		_
	Delinguent	Tax	-		100.00		-
	Interest	From Bank Accounts	283.57		1,500.00		2,702.37
	Maize Rec	Splash Park Contribution	-				-
	Transfers	From General Fund	40,666.67		488,000.00		447,333.37
	Total Revenues		40,950.24		489,600.00		450,035.74
	Total Resources						802,487.02
	Street Improvements			29,983.72	375,000.00		385,967.23 **
	Sidewalk/Bike Paths			9,529.11	75,000.00		9,529.11
	Park Improvements			1,096.23	215,000.00		232,318.41
	Other Capital Costs	Material Bins @ Public Works		31,865.00	-		59,990.20
	Total Expenditures		-	72,474.06	665,000.00		687,804.95
Cash Balance -	- 11/30/16					\$	114,682.07

**\$122,743.40 Encumbered in 2015 Budget

CITY OF MAIZE/REC COMMISSION SHARED COSTS FOR CITY HALL COMPLEX THRU 11/30/2016

					CITY PORTION YEAR TO	REC PORTION YEAR TO	
	MONTHLY BILL	CITY PORTION	REC PORTION	YEAR TO DATE COSTS	DATE	DATE	PERCENT OR FLAT RATE
Phone	\$515.19	\$379.22	\$135.97	\$5,666.37	\$4,170.70	\$1,495.67	Flat - based on number of lines
Internet	1,057.67	951.90	105.77	11,634.37	10,470.90	1,163.47	Flat - \$105.77/month
Gas	103.47	57.01	46.46	2,965.37	1,633.92	1,331.45	44.90%
Electric	2,408.94	1,327.33	1,081.61	24,220.35	13,345.41	10,874.94	44.90%
Janitor	1,856.37	1,022.86	833.51	28,596.24	15,756.53	12,839.71	44.90%
Water/Sewer	0.00	0.00	0.00	0.00	0.00	0.00	
Trash	72.60	40.00	32.60	798.60	440.03	358.57	44.90%
Insurance (Annual Bill)	0.00	0.00	0.00	10,031.60	5,527.41	4,504.19	44.90%
Pest Control	275.00	255.00	20.00	3,025.00	2,805.00	220.00	Flat - Exterminator breaks rate out
Lawn Service	0.00	0.00	0.00		0.00	0.00	Provided by Public Works
Total	\$6,289.24	\$4,033.32	\$2,255.92	\$86,937.90	\$54,149.90	\$32,788.00	

Shared Costs for City Hall Updated 12/14/2016

Equipment Reserve 2016 (As of 11/30/2016)

Beg Cash - 01/01	<u>Detail</u> /16	<u>Reason</u>	November <u>Revenue</u>	November <u>Expense</u>	<u>Budget</u>		o Date <u>I Cash</u> 114,563.11
	Interest Other Revenues	From Bank Accounts Sale of PD Radios	24.75 -		300.00		229.08
	Reimbursements	Sale of Fireworks Equipment/PD Van	-		-		3,300.00
	Transfers Total Revenues	From General Fund	<u>19,166.67</u> \$ 19,191.42		230,000.00 \$ 230,300.00	\$	210,833.37 214,362.45
			φ 10,101.42		φ 200,000.00	Ψ	214,002.40
	Total Resources					\$	328,925.56
	Trucks/Heavy Equipment Computers			-	\$ 100,000.00 50,000.00	\$	110,661.55 3,654.00
	Computers	Phone Upgrades-2015 Encumbrance					23,010.00
	Police Department Expenses			-	80,000.00	<u>ф</u>	68,000.43
	Total Expenditures			\$-	\$ 230,000.00	φ	205,325.98
Cash Balance - 1	1/30/2016					\$	123,599.58

CITY OF MAIZE/USD #266 SHARED COSTS FOR SCHOOL RESOURCE OFFICERS THRU 11/30/2016

	MON	THLY BILL	СІТҮ	PORTION	USD	#266 PORTION	YEAF		CITY PORTION YEAR TO DATE	USD #266 PORTION YEAR TO DATE
Wages	\$	8,810.72	\$	2,202.68	\$	6,608.04	\$	61,922.35	\$ 15,480.5	9 \$ 46,441.76
FICA/Medicare Taxes		629.23		157.31		471.92		4,551.98	1,138.0	3,413.99
KPERS (Employer)		808.83		202.21		606.62		5,864.01	1,466.0	4,398.01
Health/Life/Other Employer Paid Benefits		1,980.76		495.19		1,485.57		8,970.54	2,242.6	6,727.91
Totals	\$	12,229.54	\$	3,057.39	\$	9,172.16	\$	81,308.88	\$ 20,327.2	2 \$ 60,981.66

CITY OPERATIONS REPORT

DATE: December 14, 2016

TO: Maize City Council

FROM: Richard LaMunyon-Becky Bouska-Sue Villarreal-Jolene Graham

RE: September Report

1) Year End

As we close out 2016 it has been another enormously successful year for our City. The individuals that make up our employee teams are at the top of their class in their chosen areas and careers. The positive results in all areas have been exceptional. It's a privilege to be a part of it.

As staff we again thank you, our Governing Body, for your commitment and dedication to a better community for all. It is a pleasure to work with you.

2) Cox Demand Letter

The City has been notified that the \$12,796.00 "demand for payment" will be received. In paying the claim the insurance company stated, in part:

"... the settlement is the compromise of a doubtful and disputed claim ... and that said release deny liability ... to avoid litigation"

Those homeowners that filed a claim with the City have been informed of this development and the insurance company information was provided.

3) Industrial Park Development

Staff is working with the Industrial Park developer to secure additional manufacturing plants in the park. In discussion are plans and funding for additional roadways, a storm water system and expanding utilities development for the area.

The additional water demands will require a looping component and the expanded sewer service will require an upgrade of the existing system. Staff is working with Ruggles & Bohm Company who will provide an agreement for services for council consideration.

4) City Pond Improvements

This Pond project was approved for 2015 and then delayed by weather and the Watercress Villas apartment project. The Watercress apartments complex has completed the storm water drainage system into the city pond and as a result we can proceed with the fixes originally planned during 2015.. Staff is meeting with Graber Backhoe, Inc to repair the pond. (*They provided the bid for service in March 2015*) It is anticipated an updated agreement will be brought to the Council in the near future.

5) Holidays

- City Hall & Public Works closed December 23rd & 26th
- City Hall & Public Works closed January 2nd

6) Economic Development

- Thirty-six new housing starts & three tri-plexus
- Copper Creek Apartments
 - Emergency/Construction entrance has been approved by KDOT
- Watercress Apartments
 - > On schedule
- Industrial Park Expansion
 - Expansion under discussion

7) City Meetings

٠	December 19th -	Council	@ 7pm
٠	January 12 th -	Planning	@ 7pm
٠	January 10 th -	Park & Tree	@ 5:30pm
٠	January 16 th -	Council	@ 7pm